Skip to main content
Log in

Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Optical microscope-cathodoluminescence (OM-CL) microscopy is a modern luminescence technique with widespread applications in geosciences. Many rock-forming and accessory minerals show specific CL properties that can be successfully used in geoscience and materials science research. One of the most spectacular applications is the visualization of growth textures, alteration, and other internal textures in minerals that are not discernible with other analytical techniques. These results provide information about the real structure of minerals and materials and can be used for the reconstruction of geological processes of mineral formation and subsequent alteration. The information obtained from CL imaging in combination with spectral measurements of the CL emission allows for a more thorough understanding of structural states of solids and/or trace-element incorporation. Additional information can be obtained when luminescence studies are combined with other analytical techniques with high sensitivity and high spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allégre CJ, Provost A, Jaupart C (1981) Oscillatory zoning: A pathological case of crystal growth. Nature 294:223–228

    Article  Google Scholar 

  • Barbin V (2000) Cathodoluminescence of carbonate shells: biochemical vs. Diagenetic process. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 303–329

    Chapter  Google Scholar 

  • Barker CE, Kopp OC (1991) Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Society for Sedimentary Geology, Tulsa

    Google Scholar 

  • Boggs S Jr, Krinsley H (2006) Application of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Boggs S Jr, Krinsley DH, Goles GG, Seyedolali A, Dypvik H (2001) Identification of shocked quartz by scanning cathodoluminescence imaging. Mateor Planet Sci 36:783–791

    Article  Google Scholar 

  • Botis S, Nokhrin SM, Pan Y, Xu Y, Bonli T (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580

    Article  Google Scholar 

  • Bruckschen P, Richter DK (1994) Zementstratigraphische Grundmuster in marinen Karbonatablagerungen des Phanerozoikums—ein Abbild der normalen Beckenentwicklung. Zbl Geol Paläont Teil I 1993:959–972

    Google Scholar 

  • Bulanova GP (1995) The formation of diamond. J Geoch Exploration 53:1–23

    Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Compagnoni R, Rolfo F, Castelli D (2012) Jadeitite from the Monviso meta-ophiolite, Western Alps: occurrence and genesis. Europ J Mineral 24:333–343

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 469–500

    Google Scholar 

  • Dowty E (1976) Crystal structure and crystal growth: II. Sector zoning in Minerals. Amer Mineral 61:460–469

    Google Scholar 

  • Drechsel M, Seifert T, Götze J (2003) Comparison of quartz-types from the polymetallic sulfide veins of the Freiberg district based on cathodoluminescence investigations. In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Proceedings of the 7th biennial SGA meeting. Millpress, Rotterdam, pp 763–765

    Google Scholar 

  • Evans J, Hogg AJC, Hopkins MS, Howarth RJ (1994) Quantification of quartz cements using combined SEM, CL, and image analysis. J Sed Res A64:334–338

    Google Scholar 

  • Fedo CM, Young GM, Nesbitt HW, Hanchar JM (1997) Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Res 84:17–36

    Article  Google Scholar 

  • Fischer J, Voigt S, Franz M, Schneider JW, Joachimski MM, Tichomirowa M, Götze J, Furrer H (2012) Palaeoenvironment of the late Triassic Rhaetian Sea: implications from oxygen and strontium isotopes of hybodont shark tooth enameloid. Palaeogeogr Palaeoclimatol Palaeoecol 353–355:60–72

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2005) Luminescence spectroscopy of minerals and materials. Springer, Berlin

    Google Scholar 

  • Gebauer D, Schertl H-P, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24

    Article  Google Scholar 

  • González-Acebrón L, Götze J, Barca D, Arribas J, Mas R, Pérez-Garrido C (2012) Diagenetic albitization in the Tera Group, Cameros Basin (NE Spain) recorded by trace elements and spectral cathodoluminescence. Chem Geol 312–313:148–162

    Google Scholar 

  • Gorobets BS, Rogozine AA (2002) Luminescent spectra of minerals. RPC VIMS, Moscow

    Google Scholar 

  • Götte T, Richter DK (2004) Quantitative high-resolution cathodoluminescence spectroscopy of smithsonite. Min Mag 68:199–207

    Article  Google Scholar 

  • Götze J (2000a) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberger Forschungsheft C 485, Freiberg

  • Götze J (2000b) Cathodoluminescence in applied geosciences. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 457–477

    Chapter  Google Scholar 

  • Götze J (2009a) Cathodoluminescence microscopy and spectroscopy of lunar rocks and minerals. In: Gucsik A (ed) Cathodoluminescence and its application in the planetary sciences. Springer, Berlin, pp 87–110

    Chapter  Google Scholar 

  • Götze J (2009b) Chemistry, textures and physical properties of quartz—geological interpretation and technical application. Mineral Mag 73:645–671

    Article  Google Scholar 

  • Götze J (2009c) Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials. Mater Charact 60:594–602

    Article  Google Scholar 

  • Götze J, Magnus M (1997) Quantitative determination of mineral abundance in geological samples using combined cathodoluminescence microscopy and image analysis. Europ J Mineral 9:1207–1215

    Google Scholar 

  • Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contrib Sed Petrol 21:1–91

    Google Scholar 

  • Götze J, Kempe U (2008) A comparison of optical microscope (OM) and scanning electron microscope (SEM) based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineral Mag 72:909–924

    Article  Google Scholar 

  • Götze J, Habermann D, Neuser RD, Richter DK (1999a) High-resolution spectrometric analysis of REE-activated cathodoluminescence (CL) in feldspar minerals. Chem Geol 153:81–91

    Article  Google Scholar 

  • Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999b) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineral Mag 63:179–187

    Article  Google Scholar 

  • Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence of feldspar minerals. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 245–270

    Chapter  Google Scholar 

  • Götze J, Plötze M, Habermann D (2001a) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Mineral Petrol 71:225–250

    Article  Google Scholar 

  • Götze J, Heimann RB, Hildebrandt H, Gburek U (2001b) Microstructural investigation into calcium phosphate biomaterials by spatially resolved cathodoluminescence. Mater Werkst 31:130–136

    Article  Google Scholar 

  • Götze J, Hildebrandt H, Heimann RB (2001c) Charakterisierung des in vivo Resorptionsverhaltens von plasmagespritzten Hydroxylapatit-Schichten. Biomaterialien 2:54–60

    Article  Google Scholar 

  • Götze J, Plötze M, Götte T, Neuser RD, Richter DK (2002) Cathodoluminescence (CL) and Electron Paramagnetic Resonance (EPR) studies of clay minerals. Mineral Petrol 76:195–212

    Article  Google Scholar 

  • Graupner T, Götze J, Kempe U, Wolf D (2000) Cathodoluminescence imaging as a tool for characterization of quartz and trapped fluid inclusions in multistage deformed mesothermal Au-quartz vein deposits: A case study from the giant Muruntau Au-ore deposit (Uzbekistan). Mineral Mag 64:1007–1016

    Article  Google Scholar 

  • Graupner T, Kempe U, Götze J, Wolf D, Irmer G, Kremenetsky AA (2001) Au deposition and remobilization in the Muruntau “Central” quartz veins: Evidence from SEM, cathodoluminescence and fluid inclusion data. In: Piestrzyński A et al (eds) Mineral deposits at the beginning of the 21st century. Swets & Zeitlinger, Lisse, pp 747–750

    Google Scholar 

  • Gross KA, Phillips MR (1998) Identification and mapping of the amorphous phase in plasma-sprayed hyroxyapatite coating unsing scanning cathodoluminescence microscopy. J Mater Sci: Mater Med 9:797–802

    Article  Google Scholar 

  • Gucsik A (2009) Cathodoluminescence and its application in the planetary sciences. Springer, Berlin

    Book  Google Scholar 

  • Guguschev C, Götze J, Göbbels M (2010) Cathodoluminescence microscopy and spectroscopy of synthetic ruby crystals grown by the optical floating zone technique. Amer Mineral 95:449–455

    Article  Google Scholar 

  • Habermann D (2002) Quantitative cathodoluminescence (CL) spectroscopy of minerals: possibilities and limitations. Mineral Petrol 76:247–259

    Article  Google Scholar 

  • Habermann D, Neuser RD, Richter DK (2000) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 331–358

    Chapter  Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and back-scattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Hanchar JM, Rudnick RL (1995) Revealing hidden structures: the application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 86:289–303

    Article  Google Scholar 

  • Harlow GE, Sorensen SS (2005) Jade (nephrite and jadeitite) and serpentinite: metasomatic connections. Intern Geol Rev 47:113–146

    Article  Google Scholar 

  • Hartmann BH, Juhász-Bodnár K, Ramseyer K, Matter A (2000) Polyphased quartz cementation and its sources: a case study from the Upper Paleozoic Haushi Group sandstones, Sultanate of Oman. Int Assoc Sediment Spec Publ 29:253–270

    Google Scholar 

  • Houseknecht DW (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. In: Baker CE, Kopp OC (eds) Luminescence microscopy: Quantitative and qualitative aspects. SEPM, Dallas, pp 59–66

    Google Scholar 

  • Houzar S, Leichmann J (2003) Application of cathodoluminescence to the study of metamorphic textures in marbles from the eastern part of the Bohemian Massif. Bull Geosci 78:241–250

    Google Scholar 

  • Ioannou SE, Götze J, Weiershäuser L, Zubowski SM, Spooner ETC (2003) Cathodoluminescence characteristics of Archean VMS-related quartz: Noranda, Ben Nevis, and Matagami districs, Abitibi Subprovince, Canada. G3 Online Publication 5(2) doi:10.1029/2003GC000613

  • Jourdan A-L (2008) Elemental and Isotopic Zoning in Natural Alpine Quartz. PhD thesis, University Lausanne

    Google Scholar 

  • Jourdan A-L, Vennemann TW, Mullis J, Ramseyer K (2009) Oxygen isotope sector zoning in natural hydrothermal quartz. Mineral Mag 73:615–632

    Article  Google Scholar 

  • Karakus M, Moore RE (1998) CLM—a new technique for refractories. Amer Ceramic Soc Bull 77:55–61

    Google Scholar 

  • Kayama M, Nishido H, Toyoda S, Komuro K, Ninagawa K (2011) Radiation effects on cathodoluminescence of albite. Amer Mineral 96:1238–1247

    Article  Google Scholar 

  • Kempe U, Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66:135–156

    Article  Google Scholar 

  • Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 425–456

    Google Scholar 

  • Komuro K, Horikawa Y, Toyoda S (2002) Development of radiation-damage halos in low-quartz: cathodoluminescence measurement after He+ ion implantation. Mineral Petrol 76:261–266

    Article  Google Scholar 

  • Korsakov AV, Vandenabeele P, Perraki M, Moens L (2011) First findings of monocrystalline aragonite inclusions in garnet from diamond grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan). Spectrochim Acta Part A: Mol and Biomolecular Spectrosc 80:21–26

    Article  Google Scholar 

  • Krickl R, Götze J, Nasdala L (2007) New record of radiohaloes in feldspars. Mitt Österr Miner Ges 153: Abstract

  • Krickl R, Nasdala L, Götze J, Grambole D, Wirth R (2008) Alteration of SiO2 caused by natural and artificial alpha-irradiation. Europ J Mineral 20:517–522

    Article  Google Scholar 

  • Kryza R, Willner AP, Massonne H-J, Muszyński A, Schertl H-P (2011) Blueschist-facies metamorphism in the Kaczawa Mountains (Sudetes, SW Poland) of the Central-European Variscides: P-T constraints by a jadeite-bearing metatrachyte. Mineral Mag 75:241–263

    Article  Google Scholar 

  • Lehmann K, Berger A, Götte T, Ramseyer K, Wiedenbeck M (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral Mag 73:633–644

    Article  Google Scholar 

  • Leichmann J, Broska I, Zachovalová K (2003) Low-grade metamorphic alteration of feldspar minerals: a CL study. Terra Nova 15:104–108

    Article  Google Scholar 

  • Leichmann J, Jacher-Sliwczynska K, Broska I (2009) Element mobility and fluid path ways during feldspar alteration: textural evidence from cathodoluminescence and electron microprobe study of an example from tonalites (High Tatra, Poland-Slowakia). N Jb Mineral Abh 186(1):1–10

    Article  Google Scholar 

  • Liu F, Xu Z (2004) Fluid inclusions hidden in coesite-bearing zircons in ultrahigh-pressure metamorphic rocks from southwestern Sulu terrane in eastern China. Chinese Science Bull 49:396–404

    Google Scholar 

  • Long JVP, Agrell SO (1965) The cathodoluminescence of minerals in thin section. Mineral Mag 34:318–326

    Article  Google Scholar 

  • Machel HG (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 271–302

    Chapter  Google Scholar 

  • Machel HG, Burton EA (1991) Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. SEPM, Tulsa, pp 37–58

    Google Scholar 

  • Maresch WV, Grevel C, Stanek K-P, Schertl H-P, Carpenter M (2012) Multiple growth mechanisms of jadeite in Cuban metabasite. Europ J Mineral 24:217–235

    Article  Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centres in minerals. Springer, Berlin

    Book  Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin-Hyman, Boston

    Google Scholar 

  • Matysová P, Leichmann J, Grygar T, Rössler R (2008) Cathodoluminescence of silicified trunks from the Permo-Carboniferous basins in eastern Bohemia, Czech Republic. Europ J Mineral 20:217–231

    Article  Google Scholar 

  • Matysová P, Rössler R, Götze J, Leichmann J, Forbes G, Taylor EL, Sakala J, Grygar T (2010) Alluvial and volcanic pathways to silicified plant stems (Upper Carboniferous, Triassic) and their taphonomic and palaeoenvironmental meaning. Palaeogeogr Palaeoclimatol Palaeoecol 292:127–143

    Article  Google Scholar 

  • McClelland WC, Gilotti JA, Mazdab FK, Wooden JL (2009) Trace-element record in zircons during exhumation from UHP conditions, North-East Greenland Caledonides. Europ J Mineral 21:1135–1148

    Article  Google Scholar 

  • Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sed Petrol 60:53–58

    Google Scholar 

  • Meyers WJ (1974) Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico. J Sed Petrol 44:837–861

    Google Scholar 

  • Meyers WJ (1991) Calcite cement stratigraphy: An overview. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. SEPM, Tulsa, pp 133–148

    Google Scholar 

  • Milliken KL, Laubach SE (2000) Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Müller A, Seltmann R, Behr HJ (2000) Application of cathodoluminescence to magmatic quartz in tin granite—case study from the Schellerhau Granite Complex, Eastern Ertgebirge, Germany. Miner Deposita 35:169–185

    Article  Google Scholar 

  • Müller A, Kronz A, Breiter K (2002) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bull Czech Geol Surv 77(2):135–145

    Google Scholar 

  • Müller A, Rene M, Behr H-J, Kronz A (2003) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts., Czech Rebublic). Mineral Petrol 79:167–191

    Article  Google Scholar 

  • Müller A, van den Kerkhof AM, Broekmans MATM (2011) Trace element content and optical cathodoluminescence of kyanite. In: Broekmanns MATM (ed) Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Springer, Trondheim, pp 453–461

    Google Scholar 

  • Mumenthaler T, Schmitt W, Peters T, Ramseyer K, Zweili F (1995) Tracing the reaction processes during firing of carbonate containing brick mixes with the help of cathodoluminescence. Ziegeleiindustrie Int 5:307–319

    Google Scholar 

  • Nasdala L, Götze J, Gaft M, Hanchar J, Krbetschek M (2004) Luminescence techniques in Earth Sciences. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. Eur Mineral Union Notes in Mineralogy, vol 6. Eötvös University, Budapest, pp 43–91

    Google Scholar 

  • Nasdala L, Hanchar JM, Whitehouse MJ, Kronz A (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103

    Article  Google Scholar 

  • Nasdala L, Grambole D, Götze J, Kempe U, Váczi T (2010) Helium irradiation study on zircon. Contr Mineral Petrol 161:777–789

    Article  Google Scholar 

  • Nasdala L, Beyssac O, Schopf JW, Bleisteiner B (2012) Application of Raman-based images in the Earth sciences. In: Zoubir A (ed) Raman imaging—Techniques and applications. Springer Series in Optical Sciences, vol 168. Springer, Berlin, pp 145–187

    Google Scholar 

  • Nazarov MV, Nazarova TA (1994) Cathodoluminescence and computer graphics in materials science. Scanning 16:11–17

    Article  Google Scholar 

  • Nazarova TA, Nazarov MV (1996) Analysis of cathodoluminescence from indented MgO crystals subjected to thermal environments. Philos Mag A 74:1311–1318

    Article  Google Scholar 

  • Neuser RD (1988) Zementstratigraphie und Kathodolumineszenz des Korallenoolith (Malm) im Südniedersächsischen Bergland. Bochumer Geologische und Geotechnische Arbeiten 32:172

    Google Scholar 

  • Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1995a) Kathodolumineszenz: Methodik und Anwendung. Zentralbl Geol Paläontol Teil I, H 1/2:287–306

    Google Scholar 

  • Neuser RD, Reinecke T, Schertl H-P (1995b) Low temperature cathodoluminescence of selected minerals from high pressure rocks. Bochumer Geologische und Geotechnische Arbeiten 44:119–123

    Google Scholar 

  • Onasch CM, Vennemann TW (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23:1103–1106

    Article  Google Scholar 

  • Owen MR (1988) Radiation-damage halos in quartz. Geol 16:529–532

    Article  Google Scholar 

  • Pagel M, Barbin V, Blanc P, Ohnenstetter D (2000) Cathodoluminescence in geosciences. Springer, Berlin

    Book  Google Scholar 

  • Perchuk AL, Burchard M, Maresch WV, Schertl H-P (2008) Melting of hydrous and carbonate mineral inclusions in garnet host during ultrahigh pressure conditions. Lithos 103:25–45

    Article  Google Scholar 

  • Perchuk АL, Davidova VV, Burchard М, Maresch WV, Schertl H-P, Yapaskurt VО, Safonov ОG (2009) Modification of mineral inclusions in garnet under high-pressure conditions: experimental simulation and application to the carbonate-silicate rocks of Kokchetav massif. Russian Geology and Geophysic 50:1153–1168

    Article  Google Scholar 

  • Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ramseyer K, Baumann J, Matter A, Mullis J (1988) Cathodoluminescence colours of alpha-quartz. Mineral Mag 52:669–677

    Article  Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Amer Miner 75:791–800

    Google Scholar 

  • Ramseyer K, AlDahan AA, Collini B, Landstrom O (1992a) Petrological modifications in granitic rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics 216:195–204

    Article  Google Scholar 

  • Ramseyer K, Boles JR, Lichtner PC (1992b) Mechanism of diagenetic albitization. J Sed Petrol 62:349–356

    Google Scholar 

  • Reinhardt J (2011) Tracking mineral replacement in metamorphic rocks using optical and chemical fingerprints of pre-existing minerals: an example of retrograde Al2SiO5 transformation. Europ J Mineral 23:795–803

    Article  Google Scholar 

  • Remond G, Phillips MR, Roques-Carmes C (2000) Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 59–126

    Chapter  Google Scholar 

  • Richter DK, Götte T, Habermann D (2002) Cathodoluminescence of authigenic albite. Sed Geol 150:367–374

    Article  Google Scholar 

  • Richter DK, Götte T, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166

    Article  Google Scholar 

  • Rusk B (2012) Cathodoluminescent textures and trace elements in hydrothermal quartz. In: Götze J, Möckel R (eds) Quartz: Deposits, Mineralogy and Analytics. Springer, Berlin, pp 307–329

    Chapter  Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Kent AJR (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Amer Mineral 91:1300–1312

    Article  Google Scholar 

  • Rusk B, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescent textures and insights into vein formation. Geology 36:547–550

    Article  Google Scholar 

  • Satish-Kumar M, Mori H, Kusachi I, Wada H (2006) Cathodoluminescence microscopy of high-temperature skarn minerals from Fuka contact aureole, Okayama, Japan. Geosci Reports Shizuoka Univ 33:21–28

    Google Scholar 

  • Schertl H-P (1992) Petrologie und Geochemie einer ultrahochdruckmetamorphen Gesteinsserie von Parigi. Dissertation, Ruhr-Universität Bochum, Dora Maira Massiv/Westalpen

    Google Scholar 

  • Schertl H-P, Neuser RD, Sobolev NV, Shatsky VS (2004) UHP-metamorphic rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan: new insights using cathodoluminescence petrography. Europ J Mineral 16:49–57

    Article  Google Scholar 

  • Schertl H-P, Medenbach O, Neuser RD (2005) UHP-metamorphic rocks from Dora Maira, Western Alps: Cathodoluminescence of silica and twinning of coesite. Russian Geol Geophysics 46:1327–1332

    Google Scholar 

  • Schertl H-P, Maresch WV, Stanek KP, Hertwig A, Krebs M, Baese R, Sergeev SS (2012) New occurrences of jadeitite, jadeite quartzite and jadeite-lawsonite quartzite in the Dominican Republic, Hispaniola: Petrological and geochronological overview. Europ J Mineral 24:199–216

    Article  Google Scholar 

  • Seifert S, Saaro S, Götze J, Heimann RB, Magnus M (2004) Investigation of phase composition and microstructure of fused corundum-mullite refractories. In: Pecchio M et al (eds) Applied Mineralogy—Developments in Science and Technology, vol 1. ICAM-BR, Sáo Paulo, pp 305–308

    Google Scholar 

  • Shi G-H, Harlow GE, Wang J, Wang J, Ng E, Wang X, Zao SM, Cui WY (2012) Mineralogy of jadeitites and related rocks from Myanmar: a review with new data. Europ J Mineral 24:345–370

    Article  Google Scholar 

  • Sippel RF (1965) Simple device for luminescence petrography. Rev Scient Instr 36:556–558

    Article  Google Scholar 

  • Sippel RF (1968) Sandstone petrology: evidence from luminescence petrography. J Sed Research 38:530–554

    Google Scholar 

  • Sippel RF (1971) Luminescence petrography of the Apollo 12 rocks and comperative features in terrestrial rocks and meteorites. Proc Second Lunar Sci Conf 1:247–263

    Google Scholar 

  • Sippel RF, Glover ED (1965) Structures in carbonate rocks made visible by luminescence petrography. Science 150(3701):1283–1287

    Article  Google Scholar 

  • Sippel RF, Spencer AB (1970) Luminescence petrography and properties of lunar crystalline rocks and meteorites. Proc Apollo 11 Lunar Sci Conf 3:2413–2426

    Google Scholar 

  • Slaby E, Götze J (2004) Feldspar crystallization under magma mixing conditions evidenced by cathodoluminescence and geochemical modelling—A case study from Karkonosze pluton (SW Poland). Mineral Mag 68:541–557

    Article  Google Scholar 

  • Smith JV, Stenstrom RC (1965) Electron-excited luminescence as a petrological tool. J Geol 73:627–635

    Article  Google Scholar 

  • Sobolev NV, Schertl H-P, Neuser RD (2006) Composition and paragenesis of garnets from ultrahigh-pressure calc-silicate metamorphic rocks of the Kokchetav massif (northern Kazakhstan). Russ Geol Geophys 47:519–529

    Google Scholar 

  • Sobolev NV, Schertl H-P, Neuser RD, Shatsky VS (2007) Relict unusually low iron pyrope-grossular garnets in UHPM calc-silicate rocks of the Kokchetav Massif, Kazakhstan. Intern Geol Rev 49:717–731

    Article  Google Scholar 

  • Sobolev NV, Schertl H-P, Valley JR, Page Z, Kita NT, Spicuzza MJ, Neuser RD, Logvinova AM (2011) Oxygen isotope variations of garnets and clinopyroxenes in a layered diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into the geochemical nature of deeply subducted UHPM rocks. Contrib Mineral Petrol 162:1079–1092

    Article  Google Scholar 

  • Sorensen SS, Harlow GE, Rumble D (2006) The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. Amer Mineral 91:979–996

    Article  Google Scholar 

  • Štastná A, Šachlová Š, Pertold Z, Přikryl R, Leichmann J (2012) Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali–silica reaction. Mater Charact 65:115–125

    Article  Google Scholar 

  • Valley PM, Hanchar JM, Whitehouse MJ (2011) New insights on the evolution of the Lyon Mountain Granite and associated Kiruna-type magnetite-apatite deposits, Adirondack Mountains, New York State. Geosphere 7:1194–1208

    Article  Google Scholar 

  • Vance JA (1969) On synneusis. Contr Mineral Petrol 24:7–29

    Article  Google Scholar 

  • Van den Kerkhof AM, Kronz A, Simon K, Scherer T (2004) Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescnec and trace element analysis (Bamble sector, Norway). Contr Mineral Petrol 146:637–652

    Article  Google Scholar 

  • Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contr Mineral Petrol 106:90–99

    Article  Google Scholar 

  • Vavra G (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contr Mineral Petrol 117:331–344

    Article  Google Scholar 

  • Vonlanthen P, Fitzgerald JD, Rubatto D, Hermann J (2012) Recrystallization rims in zircon (Valle d’Arbedo, Switzerland): an integrated cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM study. Amer Mineral 97:369–377

    Article  Google Scholar 

  • Vu TA, Götze J, Burkhardt K, Ulbricht J, Habermann D (1998) Application of optical and spectral cathodoluminescence in the study of MgO refractories. Interceram 47:164–167

    Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz-geothermometer. Contrib Mineral Petrol 152:743–754

    Article  Google Scholar 

  • Wark DA, Hildreth W, Speer FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238

    Article  Google Scholar 

  • Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Amer Mineral 80:1179–1187

    Google Scholar 

  • Wendler J, Köster J, Götze J, Kasch N, Zisser N, Kley J, Pudlo D, Nover G, Gaupp R (2012) Carbonate diagenesis and feldspar alteration in fault-related bleaching zones (Buntsandstein, Central Germany)—possible link to CO2-influenced fluid-mineral reaction. Int J Earth Sci 101:159–176

    Article  Google Scholar 

  • Witke K, Götze J, Rößler R, Dietrich D, Marx G (2004) Raman and cathodoluminescence spectroscopic investigations on Permian fossil wood from Chemnitz—a contribution to the study of the permineralization process. Spectrochimica Acta Part A 60:2947–2956

    Article  Google Scholar 

  • Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contr Sed 8:1–69

    Google Scholar 

Download references

Acknowledgements

Several colleagues supported CL studies during the last years by providing interesting sample material, which is gratefully acknowledged. We would also like to thank in particular Michael Magnus (Freiberg) and Dieter Dettmar (Bochum), who excellently prepared polished thin sections for the CL investigations. The comments of Lutz Nasdala (Vienna) and two anonymous reviewers helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Götze.

Additional information

Editorial handling: L. Nasdala

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götze, J., Schertl, HP., Neuser, R.D. et al. Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals. Miner Petrol 107, 373–392 (2013). https://doi.org/10.1007/s00710-012-0256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0256-0

Keywords

Navigation