Skip to main content
Log in

Large igneous provinces (LIPs) and carbonatites

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

There is increasing evidence that many carbonatites are linked both spatially and temporally with large igneous provinces (LIPs), i.e. high volume, short duration, intraplate-type, magmatic events consisting mainly of flood basalts and their plumbing systems (of dykes, sills and layered intrusions). Examples of LIP-carbonatite associations include: i. the 66 Ma Deccan flood basalt province associated with the Amba Dongar, Sarnu-Dandali (Barmer), and Mundwara carbonatites and associated alkali rocks, ii. the 130 Ma Paraná-Etendeka (e.g. Jacupiranga, Messum); iii. the 250 Ma Siberian LIP that includes a major alkaline province, Maimecha-Kotui with numerous carbonatites, iv. the ca. 370 Ma Kola Alkaline Province coeval with basaltic magmatism widespread in parts of the East European craton, and v. the 615–555 Ma CIMP (Central Iapetus Magmatic Province) of eastern Laurentia and western Baltica. In the Superior craton, Canada, a number of carbonatites are associated with the 1114–1085 Ma Keweenawan LIP and some are coeval with the pan-Superior 1880 Ma mafic-ultramafic magmatism. In addition, the Phalaborwa and Shiel carbonatites are associated with the 2055 Ma Bushveld event of the Kaapvaal craton. The frequency of this LIP-carbonatite association suggests that LIPs and carbonatites might be considered as different evolutionary ‘pathways’ in a single magmatic process/system. The isotopic mantle components FOZO, HIMU, EM1 but not DMM, along with primitive noble gas signatures in some carbonatites, suggest a sub-lithospheric mantle source for carbonatites, consistent with a plume/asthenospheric upwelling origin proposed for many LIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andréasson P-G (1994) The Baltoscandian margin in Neoproterozoic –early Palaeozoic times. Some constraints on terrane derivation and accretion in the Arctic Scandinavian Caledonides. Tectonophysics 231:1–32

    Google Scholar 

  • Arndt N, Lehnert K, Vasilyev Y (1995) Meimechites: Highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos 34:41–59

    Google Scholar 

  • Bailey DK (1992) Episodic alkaline activity across Africa: implications for the causes of continental break-up. In: Storey BC et al. (eds) Magmatism and the causes of continental break-up. Geological Society of London Special Publication 68, pp 91–98

  • Bailey D (1993) Carbonate magmas. J Geol Soc London 150:637–651

    Google Scholar 

  • Baragar WRA, Scoates RFJ (1987) Volcanic geochemistry of the northern segments of the circum-Superior Belt of the Canadian Shield. In: Pharoah TC et al. (eds) Geochemistry and mineralization of Proterozoic volcanic suites. Geological Society (London) Special Publication 33: 113–131

  • Baragar WRA, Mader U, LeCheminant GM (2001) Paleoproterozoic carbonatitic ultrabasic volcanic rocks (meimechites?) of Cape Smith Belt, Quebec. Can J Earth Sci 38:1313–1334

    Google Scholar 

  • Basu AR, Renne PR, DasGupta DK, Teichmann F, Poreda RA (1993) Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts. Science 261:902–906

    Google Scholar 

  • Bell K (ed) (1989) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 618

  • Bell K (2001) Carbonatites: relationships to mantle-plume activity. In. Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America, Special Paper 352, pp 267–290

  • Bell K, Keller J (eds) (1995) Carbonatite volcanism. IAVCEI Proceedings in Volcanology 4. Springer-Verlag, p 210

  • Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Wall F, Zaitsev AN (eds) Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province. Mineralogical Society, vol 10. Mineralogical Society, London, pp 421–455

    Google Scholar 

  • Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd. Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37:1321–1339

    Google Scholar 

  • Bell K, Simonetti A (2009) Source of parental melts to carbonatites – critical isotopic constraints. Miner Petrol. doi:10.1007/s00710-009-0059-0

  • Bell K, Tilton GR (2001) Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. J Petrol 42:1927–1945

    Google Scholar 

  • Bell K, Tilton GR (2002) Probing the mantle: the story from carbonatites. EOS, American Geophysical Union 83(273):276–277

    Google Scholar 

  • Bingen B, Demaiffe D, van Breemen O (1998) The 616 Ma old Egersund basaltic dike swarm, SW Norway, and Late Neoproterozoic opening of the Iapetus Ocean. J Geol 106:565–574

    Google Scholar 

  • Bizzarro M, Simonetti A, Stevenson RK, David J (2002) Hf isotope evidence for a hidden mantle reservoir. Geology 30:771–774

    Google Scholar 

  • Blichert-Toft J, Albarède F (2009) Mixing of isotopic heterogeneities in the Mauna Kea plume conduit. Earth Planet Sci Lett 282:190–200

    Google Scholar 

  • Bryan SE, Ernst RE (2008) Revised definition of Large Igneous Provinces (LIPs). Earth-Sci Rev 86:175–202

    Google Scholar 

  • Buchan KL, Harris BA, Ernst RE, Hanes JA (2003) Ar-Ar dating of the Pickle Crow diabase dyke in the western Superior craton of the Canadian Shield of Ontario and implications for a possible plume centre associated with ca. 1880 Ma Molson magmatism of Manitoba: Annual Meeting of the Geological Association of Canada, Mineralogical Association of Canada, Society of Economic Geologists, Vancouver, Canada (published as CD and printed volume), p 17 in printed volume

  • Buchan KL, Goutier J, Hamilton MA, Ernst RE, Matthews WA (2007) Paleomagnetism, U-Pb geochronology, and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior Province. Can J Earth Sci 44(5):643–664

    Google Scholar 

  • Buick IS, Maas R, Gibson R (2001) Precise U-Pb titanite age constraints on the emplacement of the Bushveld Complex, South Africa. J Geol Soc (Lond) 158:3–6

    Google Scholar 

  • Bulakh AG, Ivanikov VV, Orlova MP (2004) Overview of carbonatite-phoscorite complexes of the Kola Alkaline Province in the context of a Scandinavian North Atlantic Alkaline Province. In: Wall F, Zaitsev AN (eds) Phoscorites and Carbonatites from Mantle to Mine: the Key example of the Kola Alkaline Province, vol 10. The Mineralogical Society, London, pp 1–37

    Google Scholar 

  • Burke K, Dewey JF (1973) Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Google Scholar 

  • Burke K, Ashwal LD, Webb SJ (2003) New way to map old sutures using deformed alkaline rocks and carbonatites. Geology 31:391–394

    Google Scholar 

  • Campbell IH (1998) The mantle's chemical structure: insights from the melting products of mantle plumes. In: Jackson I (ed) The Earth's mantle: composition, structure, and evolution. Cambridge University Press, Cambridge, pp 259–310

    Google Scholar 

  • Campbell IH, Kerr AC (2007) Editorial: The great plume debate: testing the plume theory. Chem Geol 241:149–152

    Google Scholar 

  • Cannon WF (1994) Closing of the Midcontinent rift–A far-field effect of Grenvillian compression. Geology 22:155–158

    Google Scholar 

  • Cawood PA, McCausland PJA, Dunning GR (2001) Opening Iapetus: constraints from the Laurentian margin in Newfoundland. Geol Soc Am Bull 113:443–453

    Google Scholar 

  • Cawthorn RG, Walraven F (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39:1669–1687

    Google Scholar 

  • Chenet A-L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S (2007) 40K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15

    Google Scholar 

  • Chevé SR (1993) Cadre géologique du complexe carbonatitique du lac Castignon, fosse du Labrador. Ministére de l’Energie et des Ressources du Québec, MB 93–64

  • Coertze FJ, Burger AJ, Walraven F, Marlow AG, MacCaskie DR (1978) Field relations and age determinations in the Bushveld Complex. Trans Geol Soc S Afr 81:1–11

    Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32:1–36

    Google Scholar 

  • Coffin MF, Eldholm O (2001) Large igneous provinces: progenitors of some ophiolites? In: Ernst RE and Buchan KL (eds) Mantle plumes: their classification through time. Geological Society of America Special Paper 352, pp 59-70

  • Coffin MF, Eldholm O (2005) Large igneous provinces. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of Geology. Elsevier, Oxford, pp 315–323

    Google Scholar 

  • Courtillot VE, Renne PR (2003) On the ages of flood basalt events. Comptes Rendus Geoscience 335:113–140. doi:10.1016/S1631-0713(03)00006-3

    Google Scholar 

  • Courtillot V, Jaupart C, Manighetti I, Tapponier P, Besse J (1999) On causal links between flood basalts and continental break-up. Earth Planet Sci Lett 166:177–195

    Google Scholar 

  • Dauphas N, Marty B (1999) Heavy nitrogen in carbonatites of the Kola Peninsula: a possible signature of the deep mantle. Science 286:2488–2490

    Google Scholar 

  • Davidson A, Hamilton MA, Heaman LM, Ernst RE, Buchan KL (2009) Grenville diabase dyke swarms: extent, age, and comparative geochemistry. 2009 Joint Assembly Meeting CGU, GAC, IAH-CNC, MAC, SEG, MSA, GS, AGU (24-27 May 2009, Toronto Canada)

  • Davies GF (1990) Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet Sci Lett 99:94–109

    Google Scholar 

  • Davies GF (1999) Dynamic Earth: plates, plumes and mantle convection. Cambridge University Press, U.K., p 458

    Google Scholar 

  • Doucet S, Scoates JS, Weis D, Giret A (2005) Constraining the components of the Kerguelen mantle plume: a Hf-Pb-Sr-Nd isotopic study of picrites and high-MgO basalts from the Kerguelen Archipelago Geochemistry, Geophysics, Geosystems – G 3, Q04007. doi:10.1029/2004GC000806

  • Eales HV, Cawthorn RG (1996) The Bushveld Complex. In: Cawthorn RG (ed) Layered Intrusions. Elsevier, Amstedam, pp 181–229

    Google Scholar 

  • Eckstrand OR, Hulbert LJ (2007) Magmatic nickel-copper-platinum group element deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, no. 5, pp 205–222

  • Egorov LS (1970) Carbonatites and ultrabasic-alkaline rocks of the Maimecha-Kotui region. N. Siberia. Lithos 3:341–359

    Google Scholar 

  • Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism, and miscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 221–254

    Google Scholar 

  • Ernst RE (2007) Mafic-ultramafic large igneous provinces (LIPs): Importance of the pre-Mesozoic record. Episodes 30(2):108–114

    Google Scholar 

  • Ernst RE (2008) Carbonatites and Large Igneous Province (LIPs). Supplement to Geochimica et Cosmochimica Acta 72(12S):A246

    Google Scholar 

  • Ernst RE, Bleeker W (2009) Large igneous provinces (LIPs), dyke swarms, and mantle plumes—Significance for assembly and breakup events within Canada from 2.6 Ga to present. Can J Earth Sci, submitted

  • Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney J, Coffin M (eds) large igneous provinces: continental, oceanic, and planetary volcanism. Geophysical Monograph Series, v. 100. American Geophysical Union, pp 297–333

  • Ernst RE, Buchan KL (2001) The use of mafic dike swarms in identifying and locating mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America Special Paper 352, pp 247–265

  • Ernst RE, Buchan KL (2004) Large igneous provinces (LIPs) in Canada and adjacent regions: 3 Ga to present. Geosci Can 31:103–126

    Google Scholar 

  • Ernst RE, Buchan KL, Campbell IH (2005) Frontiers in Large Igneous Province research. Lithos 79:271–297

    Google Scholar 

  • Ernst RE, Buchan KL, Hanes JA, Hamilton MA, Harris BA, Archibald DA (2008) Extent and origin of the ca. 1880 Ma "pan-Superior" LIP. Geological Association of Canada / Mineralogical Association of Canada Annual meeting. May 2008, Quebec City

  • Foulger GR (2007) The “plate” model for the genesis of melting anomalies. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes. Geological Society of America Special Paper 430, pp 1–28, doi:10.1130/2007.2430(01)

  • French JE, Heaman LM, Chacko T (2002) Feasibility of chemical U-Th-total Pb baddeleyite dating by electron microprobe. Chem Geol 188:85–104

    Google Scholar 

  • Fuck RA, Brito Neves BB, Schobbenhaus C (2008) Rodinia descendants in South America. Precambrian Res 160:108–126. doi:10.1016/j.precamres.2007.04.018

    Google Scholar 

  • Genge MJ, Price GD, Jones AP (1995) Molecular dynamics simulation of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas. Earth Planet Sci Lett 131:225–238

    Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochim Cosmochim Acta 52:2979–2992

    Google Scholar 

  • Gibson SA, Thompson RN, Day JA (2006) Timescales and mechanisms of plume-lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth Planet Sci Lett 251:1–17

    Google Scholar 

  • Griffiths RW, Campbell IH (1991) Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. J Geophys Res 96:18295–18310

    Google Scholar 

  • Haggerty SE (1994) Superkimberlites: a geodynamic diamond window to the Earth's core. Earth Planet Sci Lett 122:57–69

    Google Scholar 

  • Halls HC (1982) The importance and potential of mafic dyke swarms in studies of geodynamic process. Geosci Can 9:145–154

    Google Scholar 

  • Halls HC, Davis DW (2004) Paleomagnetism and U-Pb geochronology of the 2.17 Ga Biscotasing dyke swarm, Ontario, Canada: evidence for vertical-axis crustal rotation across the Kapuskasing Zone. Can J Earth Sci 41:255–269

    Google Scholar 

  • Hamilton MA, Stott GM (2008) The significance of new U/Pb baddeleyite ages from two Paleoproterozoic diabase dikes in Northern Ontario; in Summary of Field Work and Other Activities 2008, Ontario Geological Survey, Open File Report 6226, pp 17–1 to 17–10

  • Hamilton MA, Buchan KL, Ernst RE, Stott GM (2009) Widespread and short-lived 1870 Ma mafic magmatism along the northern Superior craton margin. [abstract] 2009 Joint Assembly (AGU, CGU, GS, GAC, IAH-CNC, MAC, MSA, SEG), 24–27 May 2009, Toronto, Canada

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment – isotopic evidence. Science 256:517–520

    Google Scholar 

  • Hatton CJ (1995) Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces. J Afr Earth Sci 21:571–577

    Google Scholar 

  • Hauri EH, Whitehead JA, Hart SR (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99:24275–24300

    Google Scholar 

  • Heaman LM, LeCheminant AN (1993) Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126

    Google Scholar 

  • Heaman LM, Machado N (1992) Timing and origin of Midcontinent Rift alkaline magmatism, North America: evidence from the Coldwell Complex. Contrib Mineral Petrol 110:289–303

    Google Scholar 

  • Heaman LM, Easton RM, Hart TR, Hollings P, MacDonald CA, Smyk M (2007) Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Can J Earth Sci 44:1055–1086

    Google Scholar 

  • Heaman LM, Peck D, Toope K (2009) Timing and geochemistry of 1.88 Ga Molson Igneous Events, Manitoba: Insights into the formation of a craton-scale magmatic and metallogenic province. Precambrian Res 172:143–162

    Google Scholar 

  • Higgins MD, van Breemen O (1998) The age of the Sept Iles layered mafic intrusion, Canada: implications for the late Neoproterozoic / Cambrian history of southeastern Canada. J Geol 106(4):421–431

    Google Scholar 

  • Hoernle KA, Tilton GR (1991) Sr-Nd-Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: applications to magma genesis and evolution. Schweiz Miner Petrograph Mitteil 71:3–18

    Google Scholar 

  • Hoernle KA, Tilton GR, Le Bas MJ, Duggen S, Garbe-Schonberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Miner Petrol 142:520–542

    Google Scholar 

  • Huang S, Frey FA, Blichert-Toft J, Fodor RV, Bauer GR, Glenn R, Xu G (2005) Enriched components in the Hawaiian plume: evidence from Kahoolawe Volcano, Hawaii Geochemistry, Geophysics, Geosystems – G3, 6, 11, 21, 1525–2027

  • Ivanov AV (2007) Evaluation of different models for the origin of the Siberian Traps. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes. Geological Society of America Special Paper 430, pp 669–691, doi:10.1130/2007.2430(31)

  • Kamo SL, Gower CF, Krogh TE (1989) Birthdate for the Iapetus Ocean? A precise U-Pb zircon and baddeleyite age for the Long Range dikes, southeast Labrador. Geology 17:602–605

    Google Scholar 

  • Kamo SL, Krogh TE, Kumarapeli PS (1995) Age of the Grenville dyke swarm, Ontario-Quebec: implications for the timing of Iapetan rifting. Can J Earth Sci 32:273–280

    Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofimov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91

    Google Scholar 

  • Kinnaird JA (2005) The Bushveld large igneous province. http://www.largeigneousprovinces.org/LOM.html [May 2005]

  • Kogarko LN (2006) Enriched mantle reservoirs are the source of alkaline magmatism. In: Vladykin NV (ed) Alkaline Magmatism, its sources and plumes. Proceedings of VI International Workship. Irkutsk and Napoli, pp 46–58

  • Kogarko LN, Kononova VA, Orlova MP, Woolley AR (1995) Alkaline rocks and carbonatites of the world part 2: former USSR. Chapman and Hall, p 226

  • Kumarapeli SP, St. Seymour K, Fowler A, Pintson H (1990) The problem of the magma source of a giant radiating mafic dyke swarm in a failed arm setting. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic Dykes and emplacement mechanisms. Balkema, Rotterdam, pp 163–171

    Google Scholar 

  • Kwon ST (1986) Pb-Sr-Nd isotope study of the 100 to 2700 Ma old alkalic rock-carbonatite complexes in the Canadian Shield: inferences on the geochemical and structural evolution of the mantle. Unpublished Ph.D. thesis. University of California, Santa Barbara, California, p 242

  • Le Bas MJ (1977) Carbonatite-Nephelinite Volcanism. John Wiley and Sons, pp 347

  • Le Bas MJ (1984) Oceanic carbonatites. In: Kornprobst J (ed) Kimberlites: 1. Kimberlites and related rocks. Proceedings of the Third International Kimberlite Conference. Elsevier, New York, pp 169–178

    Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, pp 236

  • Le Roex AP, Lanyon R (1998) Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, northwestern Namibia: evidence for plume-lithosphere interactions. J Petrol 39:1117–1146

    Google Scholar 

  • Lee CA (1996) A review of mineralization in the Bushveld Complex and some other layered intrusions. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science B.V, Amsterdam, pp 103–145

    Google Scholar 

  • Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lul S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res 160:179–210

    Google Scholar 

  • Mapeo RBM, Ramokate LV, Corfu F, Davis DW, Kampunzu AB (2006) The Okwa basement complex, western Botswana: U-Pb zircon geochronology and implications for Eburnean processes in southern Africa. J Afr Earth Sci 46:253–262

    Google Scholar 

  • Marty B, Tolstikhin I, Kamensky IL, Nivin V, Balaganskaya E, Zimmerman J-L (1998) Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle. Earth Planet Sci Lett 164:179–192

    Google Scholar 

  • Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200-million-year-old continental flood basalts of the central Atlantic Magmatic Province. Science 284:616–618

    Google Scholar 

  • May PR (1971) Pattern of Triassic-Jurassic diabase dykes around the North Atlantic in context of predrift position of the continents. Geol Soc Am Bull 82:1285–1292

    Google Scholar 

  • McCausland PJA, Van der Voo R, Hall CM (2007) Circum-Iapetus paleogeography of the Precambrian-Cambrian transition with a new paleomagnetic constraint from Laurentia. Precambrian Res 156:125–152

    Google Scholar 

  • McHone JG (2000) Non-plume magmatism and tectonics during the opening of the central Atlantic Ocean. Tectonophysics 316:287–296. doi:10.1016/S0040-1951(99)00260-7

    Google Scholar 

  • McKenzie D (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74:81–91

    Google Scholar 

  • Meert JG, Walderhaug HJ, Torsvik TH, Hendriks BWH (2007) Age and paleomagnetic signature of the Alnø carbonatite complex (NE Sweden): Additional controversy for the Neoproterozoic paleoposition of Baltica. Precambrian Res 154:159–174

    Google Scholar 

  • Naldrett AJ (1999) World-class Ni-Cu-PGE deposits: key factors in their genesis. Miner Deposita 34:227–240

    Google Scholar 

  • Nicholson SW, Shirey SB, Schulz KJ, Green JC (1997) Rift-wide correlation of 1.1 Ga Midcontinent rift system basalts: implications for multiple mantle sources during rift development. Can J Earth Sci 34:504–520

    Google Scholar 

  • Nikishin AM, Ziegler PA, Stephenson RA, Cloetingh SAPL, Furne AV, Fokin PA, Ershov AV, Bolotov SN, Korotaev MV, Alekseev AS, Gorbachev VI, Shipilov EV, Lankreijer A, Bembinova EYu, Shalimov IV (1996) Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophyiscs 268:23–63

    Google Scholar 

  • Olsson JR, Söderlund U, Klausen MB, Ernst RE (2009) U-Pb baddeleyite ages of major Archean dyke swarms and the Bushveld Complex, Kaapvaal Craton (South Africa): correlations to volcanic rift forming events. Precambrian Research, special issue, submitted

  • Peate DW (1997) The Parana-Etendeka province. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union Geophysical Monograph 100, pp 217–245

  • Pirajno F (1994) Mineral resources of anorogenic alkaline complexes in Namibia. Aust J Earth Sci 41:157–168

    Google Scholar 

  • Poujol M, Robb LJ, Anhaeusser CR, Gericke B (2003) A review of the geochronological constraints on the evolution of the Kaapvaal Craton. Precambrian Res 127:181–213

    Google Scholar 

  • Puffer JH (2002) A Late Neoproterozoic eastern Laurentian superplume: location, size, chemical composition, and environmental impact. Am J Sci 302:1–27

    Google Scholar 

  • Rainbird RH, Ernst RE (2001) The sedimentary record of mantle-plume uplift. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of American Special Paper 352, pp 227–245

  • Ray JS, Pande K (1999) Carbonatite alkaline magmatism associated with continental flood basalts at stratigraphic boundaries: causes for mass extinctions. Geophys Res Lett 26:1917–1920

    Google Scholar 

  • Reichardt FJ (1994) The Molopo Farms Complex, Botswana: History, stratigraphy, petrography, petrochemistry and Ni-Cu-PGE mineralization. Explor Min Geol 3:263–284

    Google Scholar 

  • Reichow MK, Pringle MS, Al’Mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AYa, Mitchell C, Puchkov VN, Safonova IYu, Scott RA, Saunders AD (2009) The timing and extent of the eruption of the Siberian traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20

    Google Scholar 

  • Reischmann T (1995) Precise U/Pb age determination with baddeleyite (ZrO2), a case study from the Phalaborwa Igneous Complex, South Africa. S Afr J Geol 98:1–4

    Google Scholar 

  • Rogers NW (2006) Basaltic magmatism and the geodynamics of the East African Rift System. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African rift system. Geological Society London, Special Publication 259, pp 77–93

  • Rukhlov AS, Bell K (2009) Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology. doi:10.1007/s00710-009-0054-5

  • Sage RP (1991) Alkalic rock, carbonatite and kimberlite complexes of Ontario, Superior Province, In: Thurston PC, Williams HR, Sutcliffe RH, Stott GM (eds.) Geology of Ontario, Part 1, Ontario Geological Survey, Special Volume, Part 1, pp 683–709

  • Sasada T, Hiyagon H, Bell K, Ebihara M (1997) Mantle-derived noble gases in carbonatites. Geochim Cosmochim Acta 61:4219–4228

    Google Scholar 

  • Saunders AD, Jones SM, Morgan LA, Pierce KL, Widdowson M, Xu YG (2007) Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem Geol 241:282–318

    Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Google Scholar 

  • Schissel D, Smail R (2001) Deep-mantle plumes and ore deposits. In: Ernst RE and Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America Special Paper 352, pp 291–322

  • Scoates JS, Friedman RM (2008) Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique. Econ Geol 103:465–471

    Google Scholar 

  • Şengör AMC (2001) Elevation as indicator of mantle-plume activity. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America Special Paper 352, pp 183–225

  • Shumlyanskyy LV, Andréasson P-G, Buchan KL, Ernst RE (2007) The Volynian flood basalt province and coeval (Ediacaran) magmatism in Baltoscandia and Laurentia. Mineral J (Ukraine) 29(4):47–53

    Google Scholar 

  • Simonetti A, Bell K, Viladkar S (1995) Isotopic data from the Amba Dongar carbonatite complex, west-central India: evidence for an enriched mantle source. Chem Geol (Isotope Geoscience Section) 122:185–198

    Google Scholar 

  • Simonetti A, Goldstein SL, Schmidberger SS, Viladkar SG (1998) Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes-inferences for mantle sources and plume-lithosphere interaction. Jour Petrol 39:1847–1864

    Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes: some phenomenology. J Geophys Res 95:6715–6736

    Google Scholar 

  • Stephenson RA,Yegorova T, Brunet M-F, Stovba S, Wilson M, Starostenko V, Saintot A, Kusznir N (2006). Late Palaeozoic intra- and pericratonic basins on the East European Craton and its margins. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoirs, 32, pp 463–479

  • Stoppa F (2007) CO2 magmatism in Italy: from deep carbon to carbonatite volcanism. In: Vladykin NV (ed) Alkaline magmatism, its sources and plumes. Proceedings of VI International Workship. Irkutsk and Napoli, pp 109–126

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petrol 47(7):1261–1315. doi:10.1093/petrology/eg1008

    Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite – diamondiferous Torngat ultramafic lampropyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361–386

    Google Scholar 

  • Tilton GR, Bell K (1994) Sr-Nd-Pb isotope relationships in Late Archean carbonatites and alkaline comples: Applications to the geochemical evolution of Archean mantle. Geochim Cosmochim Acta 58:3145–3154

    Google Scholar 

  • Tolstikhin IN, Kamensky IL, Marty B, Nivin VA, Vetrin VR, Balaganskaya EG, Ikorsky SV, Gannibal MA, Weiss D, Verhulst A, Demaiffe D (2002) Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes. Kola Peninsula: identification of lower mantle plume component. Geochim Cosmochim Acta 66:881–901

    Google Scholar 

  • Toyoda K, Horiuchi H, Tokonami M (1994) Dupal anomaly of Brazilian carbonatites: geochemical correlations with hotspots in the South Atlantic and implications for the mantle source. Earth Planet Sci Lett 126:315–331

    Google Scholar 

  • Treiman AH (1989) Carbonatite magma: properties and processes. In: Bell K (ed) Carbonatites: Genesis and evolution. Unwin Hyman, London, pp 89–104

    Google Scholar 

  • Vasiliev YuR, Zolotukhin VV (1995) The Maimecha-Kotui alkaline-ultramafic province of the northern Siberian platform, Russia. Episodes 18(4):155–164

    Google Scholar 

  • Vervoort JD, Wirth K, Kennedy B, Sandland T, Harpp KS (2007) The magmatic evolution of the Midcontinent Rift: New geochronologic and geochemical evidence from felsic magmatism. Precambrian Res 157:235–268

    Google Scholar 

  • Viladkar SG (1981) The carbonatites of Amba Dongar, Gujarat, India. Geol Soc Finland Bulletin 53:17–28

    Google Scholar 

  • Viladkar SG (1996) Geology of the carbonatite-alkalic diatreme of Amba Dongar, Gujarat. Ahmedabad, International workshop, Gujarat Mineral Development Corporation Science and Research Centre, p 74

  • Waldron JWF, van Staal CR (2001) Taconic orogeny and the accretion of the Dashwoods block: a peri-Laurentian microcontinent in the Iapetus Ocean. Geology 29:811–814

    Google Scholar 

  • Walraven F (1997) Geochronology of the Rooiberg Group, Transvaal Supergroup, South Africa. Inform Circ Econ Geol Res Unit, Univ. Witwatersrand, Johannesburg. 316, pp 21

  • Walraven F, Hattingh E (1993) Geochronology of the Nebo granite, Bushveld Complex. S Afr J Geol 96:31–41

    Google Scholar 

  • White RS, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Google Scholar 

  • Woolley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada Open File 5796

  • Wyllie PJ (1988) Solidus curves, mantle plumes, and magma generation beneath Hawaii. J Geophys Res 93:4171–4181

    Google Scholar 

Download references

Acknowledgements

We appreciate the reviews of Dan Barker and Clive Neal, and the editorial comments of Antonio Simonetti. Alexei Rukhlov is thanked for providing some detailed geochronological information about some of the carbonatites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Ernst.

Additional information

Editorial handling: A. Simonetti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, R.E., Bell, K. Large igneous provinces (LIPs) and carbonatites. Miner Petrol 98, 55–76 (2010). https://doi.org/10.1007/s00710-009-0074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0074-1

Keywords

Navigation