Skip to main content

Advertisement

Log in

Plant cell responses to allelopathy: from oxidative stress to programmed cell death

  • Review
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Allelopathy is a plant–plant interaction in which one plant releases biologically active compounds that have negative effects on the fitness of the target plant. The most pronounced effects are inhibition of seed germination and growth of neighboring plants. The roots of these plants are in contact with the allelochemicals released into the soil, as the primary target of the allelopathic action. To date, the best documented allelopathic activities relate to some weeds and invasive alien plants that show rapid spread and successful growth. A better understanding of the mechanisms of allelopathy will help to improve crop production and to manage and prevent plant invasions. At the cellular level, allelochemicals induce a burst of reactive oxygen species in the target plants, which leads to oxidative stress, and can promote programmed cell death. Lipid peroxidation and cell membrane changes, protein modifications, and increased protease activities are the early signs of cell damage. When enzymatic and nonenzymatic antioxidants cannot scavenge reactive oxidants, this can result in hydrolytic or necrotic degradation of the protoplast. Cell organelles then lose their integrity and function. In roots, the structure and activity of the apical meristem are changed, which affects root growth and water absorption. Such allelopathically active compounds might thus be applied to control and manage weeds and invasive plants in a more sustainable way, to reduce chemical pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelmigid HM, Morsi MM (2017) Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max). J Genet Eng Biotechnol 15:297–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Albouchi F, Hassen I, Casabianca H, Hosni K (2013) Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) swingle leaves. S Afr J Bot 87:164–174

    Article  CAS  Google Scholar 

  • Aliotta G, Cafiero G, Fiorentino A, Strumia S (1993) Inhibition of radish germination and root growth by coumarin and phenylpropanoids. J Chem Ecol 19:175–183

    Article  CAS  PubMed  Google Scholar 

  • Araniti F, Bruno L, Sunseri F, Pacenza M, Forgione I, Bitonti MB, Abenavoli MR (2017) The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. Plant Physiol Biochem 121:14–20

    Article  CAS  PubMed  Google Scholar 

  • Araniti F, Costas-Gil A, Cabeiras-Freijanes L, Lupini A, Sunseri F, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras A (2018) Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction. PLoS ONE 13(12):1–26

    Article  Google Scholar 

  • Babula P, Adam V, Kizek R, Sladký Z, Havel L (2009) Naphthoquinones as allelochemical triggers of programmed cell death. Environ Exp Bot 65:330–337

    Article  CAS  Google Scholar 

  • Babula P, Vaverkova V, Poborilova Z, Ballova L, Masarik M, Provaznik I (2014) Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol Biochem 84:78–86

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006) 2-Benzoxazolinone (BOA)-induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol Biochem 44:819–827

    Article  CAS  PubMed  Google Scholar 

  • Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  CAS  PubMed  Google Scholar 

  • Burgos NR, Talbert RE, Kim KS, Kuk YI (2004) Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J Chem Ecol 30:671–689

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Cappuccino N, Arnason JT (2006) Novel chemistry of invasive exotic plants. Biol Lett 2:189–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BM, Liao HX, Bin CW, Wei HJ, Peng SL (2017) Role of allelopathy in plant invasion and control of invasive plants. Allelopathy J 41:155–166

    Article  Google Scholar 

  • Chen H, Tuck T, Ji X, Zhou X, Kelly G, Cuerrier A, Zhang J (2013) Quality assessment of Japanese knotweed (Fallopia japonica) grown on Prince Edward Island as a source of resveratrol. J Agric Food Chem 61:6383–6392

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1–16

    Article  CAS  Google Scholar 

  • Cheng F, Cheng ZH, Meng HW (2016) Transcriptomic insights into the allelopathic effects of the garlic allelochemical diallyl disulfide on tomato roots. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, Kim SH, Kalkum M, Hong TB, Gorshkova EN, Torrance L, Vartapetian AB, Taliansky M (2010) Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J 29(6):1149–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciniglia C, Mastrobuoni F, Scortichini M, Petriccione M (2015) Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. Ecotoxicology 24:926–937

    Article  CAS  PubMed  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16(4):857–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27:833–840

    Article  Google Scholar 

  • Cruz-Ortega R, Anaya AL, Hernández-Bautista BE, Laguna-Hernández G (1998) Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J Chem Ecol 24:2039–2057

    Article  CAS  Google Scholar 

  • Cruz-Ortega R, Ayala-Cordero G, Anaya AL (2002) Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: effects on roots of bean, maize, and tomato. Physiol Plant 116:20–27

    Article  CAS  PubMed  Google Scholar 

  • Da Silva F, Vieira EA (2019) Phytotoxic potential of Senna occidentalis (L.) Link extracts on seed germination and oxidative stress of Ipê seedlings. Plant Biol 21:770–779

    Article  PubMed  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13

    Article  CAS  Google Scholar 

  • Deng M, Bian H, Xie Y et al (2011) Bcl-2 suppresses hydrogen-peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. FEBS J 278:4797–4810

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773

    Article  CAS  PubMed  Google Scholar 

  • Dolenc Koce J, Šoln K (2018) Phytotoxic effects of Fallopia japonica and F. × bohemica leaves. Phyton 57:47–58

    Google Scholar 

  • Fan P, Hostettmann K, Lou H (2010) Allelochemicals of the invasive neophyte Polygonum cuspidatum Sieb. & Zucc. (Polygonaceae). Chemoecology 20:223–227

    Article  CAS  Google Scholar 

  • Farooq N, Abbas T, Tanveer A, Jabran K (2020) Allelopathy for weed management. In: Mérillon JM, Ramawat K (eds.) Co-evolution of secondary metabolites. Reference Series in Phytochemistry, Springer, Cham, pp. 505–519.

  • Figueiredo J, Sousa Silva M, Figueiredo A (2018) Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol Plant Pathol 19(4):1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Frantík T, Kovářová M, Koblihová H, Bartůňková K, Nývltová Z, Vosátka M (2013) Production of medically valuable stilbenes and emodin in knotweed. Ind Crops Prod 50:237–243

    Article  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486

    Article  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Ghimire BK, Ghimire B, Yu CY, Chung I-M (2019) Allelopathic and autotoxic effects of Medicago sativa - derived allelochemicals. Plants 8(7):233

    Article  CAS  PubMed Central  Google Scholar 

  • Gilroy EM, Hein I, Van Der Hoorn R et al (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 52:1–13

    Article  CAS  PubMed  Google Scholar 

  • Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiol Plant 27:395–407

    Article  CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: yes or no. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer International Publishing, Switzerland, pp 155–176

    Chapter  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305(5685):855–858

    Article  CAS  PubMed  Google Scholar 

  • Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23(21):2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Cheng Z, Ahmad H, Ali M, Chen X, Wang M (2016) Garlic, from remedy to stimulant: evaluation of antifungal potential reveals diversity in phytoalexin allicin content among garlic cultivars; allicin containing aqueous garlic extracts trigger antioxidants in cucumber. Front Plant Sci 7:1–15

    Article  Google Scholar 

  • He Y, Zhou Q, Liu B, Cheng L, Tian Y (2016) Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatum in co-culture system. J Appl Phycol 28:2805–2814

    Article  CAS  Google Scholar 

  • Hejl AM, Koster KL (2004) Juglone distrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration and growth in soybean (Glycine max) and corn (Zea mays). J Chem Ecol 30(2):453–471

    Article  CAS  PubMed  Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39

    Article  CAS  Google Scholar 

  • Inderjit WDA, Karban R, Callaway RM (2011) The ecosystem and evolutionary context of allelopathy. Trends Ecol Evol 26(12):655–662

    Article  CAS  PubMed  Google Scholar 

  • Jmii G, Khadhri A, Haouala R (2020) Thapsia garganica allelopathic potentialities explored for lettuce growth enhancement and associated weed control. Sci Hortic 262:1–9

    Article  CAS  Google Scholar 

  • Klemenčič M, Funk C (2018) Type III metacaspases: calcium-dependent activity proposes new function for the p10 domain. New Phytol 218(3):1179–1191

    Article  PubMed  CAS  Google Scholar 

  • Klemenčič M, Novinec M, Dolinar M (2015) Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of Microcystis aeruginosa. Mol Microbiol 98(1):142–150

    Article  PubMed  CAS  Google Scholar 

  • Lara-Nuñez A, Romero-Romero T, Ventura JL, Blancas V, Anaya AL, Cruz-Ortega R (2006) Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant Cell Environ 29:2009–2016

    Article  PubMed  CAS  Google Scholar 

  • Li J, He Y, Ma D, He B, Wang Y, Chen B (2018) Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and caspase-dependent apoptosis signaling pathways in receptor plant cells. Plant Soil 425(1):297–308

    Article  CAS  Google Scholar 

  • Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q (2019) High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Locato V, De Gara L (2018) Programmed cell death in plants: an overview. In: De Gara L, Locato V (eds) Plant programmed cell death: methods and protocols. Springer, New York, pp 1–8

    Google Scholar 

  • Lu Z, Sha J, Tian Y, Zhang X, Liu B, Wu Z (2017) Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Res 21:148–155

    Article  Google Scholar 

  • Lupini A, Araniti F, Sunseri F, Abenavoli MR (2014) Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana. Plant Growth Regul 74:23–31

    Article  CAS  Google Scholar 

  • Machado MFM, Marcondes MF, Juliano MA, McLuskey K, Mottram JC, Moss CX, Juliano L, Oliveira V (2013) Substrate specificity and the effect of calcium on Trypanosoma brucei metacaspase 2. FEBS J 280(11):2608–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdavikia F, Saharkhiz MJ, Karami A (2017) Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Sci Hortic 214:133–140

    Article  CAS  Google Scholar 

  • Majeed A, Chaudhry Z, Muhammad Z (2012) Allelopathic assessment of fresh aqueous extracts of Chenopodium album L. for growth and yield of wheat (Triticum aestivum L.). Pakistan J Bot 44:165–167

    Google Scholar 

  • Mincheva T, Barni E, Siniscalco C (2016) From plant traits to invasion success: impacts of the alien Fallopia japonica (Houtt.) Ronse Decraene on two native grassland species. Plant Biosyst 150:1348–1357

    Article  Google Scholar 

  • Minina EA, Coll NS, Tuominen H, Bozhkov PV (2017) Metacaspases versus caspases in development and cell fate regulation. Cell Death Differ 24(8):1314–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitić N, Stanišić M, Savić J, Ćosić T, Stanisavljević N, Miljuš-Đukić J, Marin M, Radović S, Ninković S (2018) Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate. Protoplasma 255:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Mohammadkhani N, Servati M (2017) Nutrient concentration in wheat and soil under allelopathy treatments. J Plant Res 131:143–155

    Article  PubMed  CAS  Google Scholar 

  • Murrell C, Gerber E, Krebs C, Parepa M, Schaffner U, Bossdorf O (2011) Invasive knotweed affects native plants through allelopathy. Am J Bot 98:38–43

    Article  PubMed  Google Scholar 

  • Mushtaq W, Siddiqui MB, Hakeem KR (2020) Mechanism of action of allelochemicals. In: Alleopathy. Springer Briefs in Agriculture, Springer, Cham, pp. 61–66.

  • Mustafa G, Ali A, Ali S, Barbanti L, Ahmad M (2019) Evaluation of dominant allelopathic weed through examining the allelopathic effects of four weeds on germination and seedling growth of six crops. Pakistan J Bot 51:269–278

    CAS  Google Scholar 

  • Patni B, Chandra H, Prakash Mishra A, Kumar Guru S, Vitalini S, Iriti M (2018) Rice allelopathy in weed management - an integrated approach. Cell Mol Biol 64:84–93

    Article  PubMed  Google Scholar 

  • Pereira LAR, Pina GO, Silveira CES, Gomes SM, Toledo JL, Borghetti F (2017) Effects of Eugenia dysenterica L. extracts on roots and gravitropism of Sesamum indicum L. and Raphanus sativus L. Allelopathy J 42:3–19

    Article  Google Scholar 

  • Qu T, Du X, Peng Y, Guo W, Zhao C, Losapio G (2021) Invasive species allelopathy decreases plant growth and microbial activity. PLoS One, 16(2):e0246685.

  • Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624–D632

    Article  CAS  PubMed  Google Scholar 

  • Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N (2017) Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J 92:761–773

    Article  CAS  PubMed  Google Scholar 

  • Salguero-Linares J, Coll NS (2019) Plant proteases in the control of the hypersensitive response. J Exp Bot 70:2087–2095

    Article  CAS  PubMed  Google Scholar 

  • Schandry N, Becker C (2020) Allelopathic plants: models for studying plant–interkingdom interactions. Trends Plant Sci 25:176–185

    Article  CAS  PubMed  Google Scholar 

  • Shahzad M, Farooq M, Jabran K, Hussain M (2016) Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Prot 89:161–169

    Article  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Kurek W, Gniazdowska A, Sliwinska E, Bogatek R (2011) Cyanamide mode of action during inhibition of onion (Allium cepa L.) root growth involves disturbances in cell division and cytoskeleton formation. Planta 234:609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltys D, Rudzińska-Langwald A, Gniazdowska A, Wiśniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stael S, Van Breusegem F, Gevaert K, Nowack MK (2019) Plant proteases and programmed cell death. J Exp Bot 70(7):1991–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šoln K, Likar M, Dolenc Koce J (2021) Effects of rhizome extracts from invasive knotweed species Fallopia japonica and F. ×bohemica on radish seed germination and root growth of seedlings. Allelopathy J 52(1):103–118

    Article  Google Scholar 

  • Šoln K, Žnidaršič N, Dolenc Koce J (2021b) Root growth inhibition and ultrastructural changes in radish root tips after treatment with aqueous extracts of Fallopia japonica and F. ×bohemica rhizomes. Protoplasma, in press

  • Tamás L, Mistrík I, Zelinová V (2017) Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environ Exp Bot 140:34–40

    Article  CAS  Google Scholar 

  • Tucker Serniak L (2016) Comparison of the allelopathic effects and uptake of Fallopia japonica phytochemicals by Raphanus sativus. Weed Res 56:97–101

    Article  CAS  Google Scholar 

  • Uddin MR, Park SU, Dayan FE, Pyon JY (2014) Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Manag Sci 70:252–257

    Article  CAS  PubMed  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967

    CAS  PubMed  Google Scholar 

  • Van Doorn WG, Beers EP, Dangl JL et al (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life: programmed cell death during plant development. Trends Plant Sci 20(2):102–113

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian AB, Tuzhikov AI, Chichkova NV, Taliansky M, Wolpert TJ (2011) A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Differ 18:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inzé D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279(44):45329–45336

    Article  CAS  PubMed  Google Scholar 

  • Vorster BJ, Cullis CA, Kunert KJ (2019) Plant vacuolar processing enzymes. Front Plant Sci 10:479

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Xiao H, Zhao L, Liu J, Wang L, Zhang F, Shi Y, Du D (2016) The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition. Ecotoxicology 25:555–562

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Zhang L (2009) Plant caspase-like proteases in plant programmed cell death. Plant Signal Behav 4:902–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Han X, Benfey PN (2020) RGF1 controls root meristem size through ROS signalling. Nature 577:85–88

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Wang D, Cui H, Zhang D et al (2016) Phytotoxicity mechanisms of two coumarin allelochemicals from Stellera chamaejasme in lettuce seedlings. Acta Physiol Plant 38:248

    Article  CAS  Google Scholar 

  • Zhang W, Lu LY, Hu LY, Cao W, Sun K, Sun QB, Siddikee A, Shi RH, Dai CC (2018) Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid. Plant Cell Physiol 59:1889–1904

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Chris Berrie for thorough reading of the manuscript and English editing.

Funding

This study was financially supported by the Slovenian Research Agency (grant no. P1-0212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasna Dolenc Koce.

Ethics declarations

Ethics approval

No ethical approval was needed.

Consent to participate

The authors declare consent to participate.

Consent for publication

The authors declare consent for publication in Protoplasma.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šoln, K., Klemenčič, M. & Koce, J.D. Plant cell responses to allelopathy: from oxidative stress to programmed cell death. Protoplasma 259, 1111–1124 (2022). https://doi.org/10.1007/s00709-021-01729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01729-8

Keywords

Navigation