Skip to main content
Log in

Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In 2009, the draft genome of the reference inbred line of maize (Zea mays L. spp. mays cv. B73) was published so that, using this specific corn variety, molecular analyses of physiological processes became possible. However, the morphology and developmental patterns of B73 maize, compared with that of the more frequently used hybrid varieties, have not yet been analyzed. Here, we describe organ development in seedlings of B73 maize and in those of six other hybrid cultivars, and document significant morphological as well as quantitative differences between these varieties of Z. mays. In a second set of experiments, we used etiolated seedlings of B73 maize to analyze the effect of blue light (BL) on the patterns of proteins in the tip vs. growing region of this sheath-like organ. By using two-dimensional difference gel electrophoresis (2D DIGE), coupled with tandem mass spectrometry, we detected, in the microsomal fraction of maize coleoptile tips, rapid changes in the abundance of protein spots of maize phototropin 1 and several metabolic enzymes. In the sub-apical (growing) region of the coleoptile, proteomic changes were less pronounced. These results suggest that the tip of the coleoptile of B73 maize may serve as a unique model system for dissecting BL responses in a light-sensitive plant organ of known function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baluska F, Hauskrecht M, Barlow PM, Sievers A (1996) Gravitroprism in the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton. Planta 198:310–318

    Article  CAS  PubMed  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow PM (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Borucka J, Fellner M (2012) Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced down-regulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl. Plant Growth Regul 68:503–509

    Article  CAS  Google Scholar 

  • Briggs WR (1963) Mediation of phototropic responses of corn coleoptiles by lateral transport of auxin. Plant Physiol 38:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs WR, Tocher RD, Wilson JF (1957) Phototropic auxin redistribution in corn coleoptiles. Science 126:210–212

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR (2014) Phototropism: some history, some puzzles, and a look ahead. Plant Physiol 164:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdach Z, Kurtyka R, Siemieniuk A, Karcz W (2014) Role of chloride ions in the promotion of auxin-induced growth of maize coleoptiles. Ann Bot 114:1023–1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Xu S, Chalkley RJ, Oses-Prieto JA, Burlingame AL, Wang Z-Y, Kutschera U (2012) Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Plant Biol 14:420–427

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Oses-Prieto JA, Kutschera U, Tseng T-S, Hao L, Burlingame AL, Wang Z-Y, Briggs WR (2014) Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 13:2524–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois PG, Olsefski GT, Flint-Garcia S, Setter TL, Hoekenga OA, Brutnell TP (2010) Physiological and genetic characterization of end-of-day far-red light response in maize seedlings. Plant Physiol 154:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelmann HG, Bergfeld R, Schopfer P (1995) Effect of inhibition of protein glycosylation on auxin-induced growth and the occurrence of osmiophilic particles in maize (Zea mays L.) coleotiles. J Exp Bot 46:1745–1752

    Article  CAS  Google Scholar 

  • Edelmann HG, Roth U (2006) Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model. Protoplasma 229:183–191

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Eversole K (2009) Solving the maze. Science 326:1071–1072

    Article  CAS  PubMed  Google Scholar 

  • Hager A, Brich M (1993) Blue-light-induced phosphorylation of a plasma-membrane protein from phototropically sensitive tips of maize coleoptiles. Planta 189:567–575

    Article  CAS  Google Scholar 

  • Iino M, Briggs WR (1984) Growth distribution during the first positive phototropic curvature of maize coleoptiles. Plant Cell Environm 7:97–104

    Article  Google Scholar 

  • Kriechbaumer V, Park WJ, Gierl A, Glawischnig E (2006) Auxin biosynthesis in maize. Plant Biol 8:334–339

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U (2003) Auxin-induced cell elongation in grass coleoptiles: a phytohormone in action. Curr Topics Plant Biol 4:27–46

    CAS  Google Scholar 

  • Kutschera U (2006) Acid growth and plant development. Science 311:952–953

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Briggs WR (2013) Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response. Plant Biol 15:931–940

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Briggs WR (2016) Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot 117:1–8

    Article  PubMed  Google Scholar 

  • Kutschera U, Deng Z, Oses-Prieto JA, Burlingame AL, Wang Z-Y (2010a) Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings. A quantitative proteomic analysis. Plant Signal Behav 5:509–517

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2013) Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Sci 207:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Pieruschka R, Berry JA (2010b) Leaf development, gas exchange characteristics and photorespiratory activity in maize seedlings. Photosynthetica 48:617–622

    Article  CAS  Google Scholar 

  • Kutschera U, Wang Z-Y (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschera U, Wang Z-Y (2016) Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma 253:3–14

    Article  CAS  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Markelz NH, Costich DE, Brutnell TP (2003) Photomorphogenic responses in maize seedling development. Plant Physiol 133:1574–1591

    Article  Google Scholar 

  • Matsuda S, Kajizuka T, Kadota A, Nishimura T, Koshiba T (2011) NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. J Exp Bot 62:3459–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ, Kutschera U (2012) Plant development, auxin, and the subsystem incompleteness theorem. Front Plant Sci 3(37):1–11

    Google Scholar 

  • Nishimura T, Toyooka K, Sato M, Matsumoto S, Lucas MM, Stonad M, Baluska F, Koshiba T (2011) Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tip. Plant Signal Behav 6:2013–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases: physiological and molecular features. Plant Physiol 130:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmolzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B (2016) Sucrose synthase: a unique glycosyltransferase for biocatalytic glycosylation process development. Biotech Advances 34:88–111

    Article  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Amer J Bot 93:1415–1425

    Article  Google Scholar 

  • Suzuki H, Okamoto A, Kojima A, Nishimura T, Takano M, Kagawa T, Kadota A, Kanegae T, Koshiba T (2014) Blue-light regulation of ZmPOT1 and ZmPHOT2 gene expression and the possible involvement of Zmphot1 in phototropism in maize coleoptiles. Planta 240:251–261

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bai M-Y, Wang Z-Y (2014) The brassinosteroid signaling network—a paradigm of signal integration. Curr Opin Plant Biol 21:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. The MacMillan Company, New York

    Google Scholar 

  • Yang D, Seaton DD, Krahmer J, Halliday KJ (2016) Photoreceptor effects on plant biomass, resource allocation, and metabolic state. Proc Natl Acad Sci U S A 113:7667–7672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-Y, Sae-Seaw J, Wang Z-Y (2013) Brassinosteroid signalling. Development 140:1615–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. W. R. Briggs for advice and consultation and the Alexander von Humboldt-Stiftung (AvH, Bonn, Germany) for financial support (AvH-Fellowships Stanford 2009/14 to U. K., Institute of Biology, University of Kassel, Germany). This project was supported by grants from the US National Institute of Health (NIH) (R01GM066258 to Z.-Y. W.), and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2015-cxzt-18 to Z.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kutschera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Peter Nick

Dedicated to the memory of Peter Sitte (1929–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Wang, ZY. & Kutschera, U. Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. Protoplasma 254, 1317–1322 (2017). https://doi.org/10.1007/s00709-016-1023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1023-6

Keywords

Navigation