Skip to main content
Log in

Chloramphenicol acetyltransferase—a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In this study, we have shown the applicability of chloramphenicol acetyltransferase as a new and convenient selectable marker for stable nuclear transformation as well as potential chloroplast transformation of Cyanidioschyzon merolae—a new model organism, which offers unique opportunities for studding the mitochondrial and plastid physiology as well as various evolutionary, structural, and functional features of the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

PEG:

Polyethylene glycol

Cm:

Chloramphenicol

Chl a :

Chlorophyll a

References

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Ben-Shem A, Jenner L, Yusupova G, Yusupova M (2010) Crystal structure of the eukaryotic ribosome. Science 330:1203–1209. doi:10.1126/science.1194294

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–1529. doi:10.1126/science.1212642

    Article  CAS  PubMed  Google Scholar 

  • Chrzanowska-Lightowlers ZM, Preiss T, Lightowlers RN (1994) Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. J Biol Chem 269:27322–27328

    CAS  PubMed  Google Scholar 

  • Ellis RJ (1968) Stereospecificity of chloramphenicol inhibition of chloroplast ribosomes. Biochem J 110:42

    Article  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Misumi O, Tashiro K, Yoshida Y, Nishida K, Yagisawa F, Imamura S, Yoshida M, Mori T, Tanaka K, Kuroiwa H, Kuroiwa T (2009) Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 16:59–72. doi:10.1093/dnares/dsn032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T (2010) The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Plant Cell 22:772–781. doi:10.1105/tpc.109.070227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Ohnuma M, Yoshida M, Kuroiwa T, Hirano T (2013) Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers. PLoS ONE 8, e73608. doi:10.1371/journal.pone.0073608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Kanesaki Y, Hirooka S, Era A, Sumiya N, Yoshikawa H, Tanaka K, Miyagishima S (2015) A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Front Plant Sci 6:657. doi:10.3389/fpls.2015.00657

    PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Mikami K, Uji T, Park EJ, Ohba T, Asada K, Kitade Y, Endo H, Kato I, Saga N (2008) Factors influencing efficiency of transient gene expression in the red macrophyte Porphyra yezoensis. Plant Sci 174:329–339. doi:10.1016/j.plantsci.2007.12.006

    Article  CAS  Google Scholar 

  • Grivell LA, Walg HL (1972) Subunit homology between Escherichia coli, mitochondrial and chloroplast ribosomes. Biochem Biophys Res Commun 49:1452–1458. doi:10.1016/0006-291X(72)90502-5

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Shah P, Haider A, Gupta K, Siddiqi MI, Ralph SA, Habib S (2014) Reduced ribosomes of the apicoplast and mitochondrion of Plasmodium spp. and predicted interactions with antibiotics. Open Biol 4:140045. doi:10.1098/rsob.140045

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hans-Walter H (2005) Plant biochemistry. Elsevier Academic , Boston, pp 532–539

    Google Scholar 

  • Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457. doi:10.1038/nature12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 106:12548–12553. doi:10.1073/pnas.0902790106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber AP, Inouye T, Sekine Y, Fujita Y, Omata T, Tanaka K (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 5:707–717. doi:10.1093/pcp/pcq043

    Article  Google Scholar 

  • Jarvis P, Robinson C (2004) Mechanisms of protein import and routing in chloroplasts. Curr Biol 14:1064–1077. doi:10.1016/j.cub.2004.11.049

    Article  Google Scholar 

  • Kashino Y, Inoue-Kashino N, Roose JL, Pakrasi HB (2006) Absence of the PsbQ protein results in destabilization of the PsbV protein and decreased oxygen evolution activity in cyanobacterial Photosystem II. J Biol Chem 281:20834–20841. doi:10.1074/jbc.M603188200

    Article  CAS  PubMed  Google Scholar 

  • Kearsey SE, Craig IW (1981) Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290:607–608. doi:10.1038/290607a0

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998) The division apparatus of plastid and mitochondria. Int Rev Cytol 181:1–41. doi:10.1016/S0074-7696(08)60415-5

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ruf S, Boc R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76:443–451. doi:10.1007/s11103-010-9678-4

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Weisz DA, Vidavsky I, Gross ML, Pakrasi HB (2014) MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II. Proc Natl Acad Sci U S A 25:4638–4643. doi:10.1073/pnas.1323063111

    Article  Google Scholar 

  • Long KS, Porse BT (2003) A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel Nucl. Acids Res 31:7208–7215. doi:10.1093/nar/gkg945

    Article  CAS  Google Scholar 

  • Margulies MM, Brubaker C (1970) Effect of chloramphenicol on amino acid incorporation by chloroplasts and comparison with the effect of chloramphenicol on chloroplast development in vivo. Plant Physiol 45:632–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci 26:20140330. doi:10.1098/rstb.2014.0330

    Article  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657. doi:10.1038/nature02398

    Article  CAS  PubMed  Google Scholar 

  • Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671. doi:10.1093/pcp/pch087

    Article  CAS  PubMed  Google Scholar 

  • Minoda A, Weber APM, Tanaka K, Miyagishma S (2010) Nucleus-independent control of the Rubisco operon by plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. Plant Physiol 154:1532–1540. doi:10.1104/pp.110.163188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagishima S, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807. doi:10.1038/ncomms4807

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2004) Triple immunofluorescent labeling of FtsZ, Dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 52:843–849. doi:10.1369/jhc.4C6315.2004

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa H, Shin-I T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56:485–497

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120. doi:10.1093/pcp/pcm157

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma M, Misumi O, Fujiwara T, Watanabe S, Tanaka K, Kuroiwa T (2009) Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. Protoplasma 236:107–112. doi:10.1007/s00239-002-2419-9

    Article  CAS  PubMed  Google Scholar 

  • Ohta N, Sato N, Kuroiwa T (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res 26:5190–5198. doi:10.1093/nar/26.22.5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77. doi:10.1093/dnares/10.2.67

    Article  CAS  PubMed  Google Scholar 

  • Recht MI, Douthwaite S, Puglisi JD (1999) Basis for bacterial specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138. doi:10.1093/emboj/18.11.3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrok EF, Fritsh J, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Sing Harbor Laboratory Press

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization

  • Shaw WV, Unowsky J (1968) Mechanism of R factor-mediated chloramphenicol resistance. J Bacteriol 95:1976–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Johannsen H, Gibbs SP (1972) Effects of chloramphenicol on chloroplast and mitochondrial ultrastructure in Ochromonas danica. J Cell Biol 52:598–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegeman WJ, Hoober JK (1974) Mitochondrial protein synthesis in Chlamydomonas reinhardtii y-l. J Biol Chem 249:8866–6873

    Google Scholar 

  • Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima S (2015) Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol 56:1962–1980. doi:10.1093/pcp/pcv120

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications”. Proc Natl Acad Sci U S A: 4350–4354

  • Watanabe S, Ohnuma M, Sato J, Yoshikawa H, Tanaka K (2011) Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. J Gen Appl Microbiol 57:69–72. doi:10.2323/jgam57.69

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Sato J, Imamura S, Ohnuma M, Ohoba Y, Chibazakura T, Tanaka K, Yoshikawa H (2014) Stable expression of a GFP-reporter gene in the red alga Cyanidioschyzon merolae. Biosci Biotechnol Biochem 78:175–177. doi:10.1080/09168451.2014.877823

    Article  CAS  PubMed  Google Scholar 

  • Xie WH, Zhu CC, Zhang NS, Li DW, Yang WD, Liu JS, Sathishkumar R, Li HY (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum. Mar Biotechnol 16:538–546. doi:10.1007/s10126-014-9570-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunis AA, Manyan DR, Arimura GK (1973) Comparative effect of chloramphenicol and thiamphenicol on DNA and mitochondrial protein synthesis in mammalian cells. J Lab Clin Med 81:713–718

    CAS  PubMed  Google Scholar 

  • Zilinskas BA, Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10:7–35. doi:10.1007/BF00024183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was financed by grant Opus 5 (DEC-2013/09/B/NZ1/00187) awarded by the Polish National Science Centre.

We acknowledge the contribution of Dr. Bohdan Paterczyk from the Laboratory of Electron and Confocal Microscopy, University of Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksymilian Zienkiewicz.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zienkiewicz, M., Krupnik, T., Drożak, A. et al. Chloramphenicol acetyltransferase—a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae . Protoplasma 254, 587–596 (2017). https://doi.org/10.1007/s00709-015-0936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0936-9

Keywords

Navigation