Skip to main content
Log in

Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356

    Article  CAS  PubMed  Google Scholar 

  • Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Curr Opin Plant Biol 11:187–192

    Article  CAS  PubMed  Google Scholar 

  • Ayliffe M et al (2011) Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica 179:33–40

    Article  Google Scholar 

  • Ayliffe M et al (2013) A simple method for comparing fungal biomass in infected plant tissues. Mol Plant Microbe Interact 26:658–667

    Article  CAS  PubMed  Google Scholar 

  • Azinheira HGAHG, Silva MCSMC, Talhinhas PTP, Medeira CMC, Maia IMI, Anne-Sophie Petitot ASP, Fernandez DFD (2010) Non-host resistance responses of Arabidopsis thaliana to the coffee leaf rust fungus (Hemileia vastatrix). Botany 88:621–629

    Article  Google Scholar 

  • Borhan MH, Gunn N, Cooper A, Gulden S, Tor M, Rimmer SR, Holub EB (2008) WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Mol Plant Microbe Interact 21:757–768

    Article  CAS  PubMed  Google Scholar 

  • Borhan MH, Holub EB, Kindrachuk C, Omidi M, Bozorgmanesh-Frad G, Rimmer SR (2010) WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops. Mol Plant Pathol 11:283–291

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y et al (2012) Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biol 12:96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, Zhang H, Yao J, Han Q, Wang X, Huang L, Kang Z (2013) Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust. Plant Physiol Biochem 62:11–18

    Article  CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chuio T et al (2007) Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim Biophys Acta 1769:497–505

    Article  Google Scholar 

  • Collins NC et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  PubMed  Google Scholar 

  • Dean R et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:804–804

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ellis J (2006) Insights into nonhost disease resistance: can they assist disease control in agriculture? Plant Cell 18:523–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eric A, Allen HCH, Steadman JR, Stavely RJ (1991) Influence of leaf surface features on spore deposition and the epiphytic growth of phytopathogenic fungi. In: microbial ecology of leaves. Springer, Verlag, New York, pp 87–110

    Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. Embo J 20:5400–5411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  CAS  PubMed  Google Scholar 

  • Gan PH, Dodds PN, Hardham AR (2012) Plant infection by biotrophic fungal and oomycete pathogens. In: Silvia Perotto, František Baluška (eds) Signaling and communication in plant symbiosis. Springer, Berlin Heidelberg, pp 183–212

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  CAS  PubMed  Google Scholar 

  • Hao CZ, Chen YL, Zhang B, Li YF, Zuo H, Qi T, Ma Q (2013) Histochemical comparison of the nonhost tomato with resistant wheat against Blumeria graminis f. sp tritici. Microsc Res Tech 76:514–522

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (1974) Light and electron microscope studies of the interactions of host and non-host plants with cowpea rust-Uromyces phaseoli var. vignae. Physiol Plant Pathol 4:403–408

    Article  Google Scholar 

  • Heath MC (1979) Partial characterization of the electron-opaque deposits formed in the non-host plant, French bean, after cowpea rust infection. Physiol Plant Pathol 15:141–144

    Article  Google Scholar 

  • Heath MC (1981) Resistance of plants to rust infection. Phytopathology 71:971–974

    Article  Google Scholar 

  • Heath MC (1997) Signalling between pathogenic rust fungi and resistant or susceptible host plants. AoB Plants 80:713–720

    CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hilaire E et al (2001) Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact 14:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Hood M, Shew H (1996) Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86:704–708

    Article  Google Scholar 

  • Hoogkamp T, Chen WQ, Niks R (1998) Specificity of prehaustorial resistance to Puccinia hordei and to two inappropriate rust fungi in barley. Phytopathology 88:856–861

    Article  CAS  PubMed  Google Scholar 

  • Huckelhoven R, Dechert C, Kogel KH (2001) Non-host resistance of barley is associated with a hydrogen peroxide burst at sites of attempted penetration by wheat powdery mildew fungus. Mol Plant Pathol 2:199–205

    Article  CAS  PubMed  Google Scholar 

  • Huitema E, Vleeshouwers VGAA, Francis DM, Kamoun S (2003) Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Mol Plant Pathol 4:487–500

    Article  CAS  PubMed  Google Scholar 

  • Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant Microbe Interact 19:1472–1472

    Article  CAS  Google Scholar 

  • Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jwa NS, Agrawal GK, Rakwal R, Park CH, Agrawal VP (2001) Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun 286:973–983

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Shang H, Li Z (1993) Fluorescence staining technique of wheat rust tissue. Plant Prot 2:27, in Chinese

    Google Scholar 

  • Koch K et al (2006) Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals. Planta 223:258–270

    Article  CAS  PubMed  Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963

    Article  CAS  Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178

    Article  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lee HA et al (2014) Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol 203:926–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis JRD BG (1972) Behaviour of uredospore germ-tubes of Puccinia graminis tritici in relation to the fine structure of wheat leaf surfaces. Trans Br Mycol Soc 58:139–145

    Article  Google Scholar 

  • Lipka V et al (2005) Pre-and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180

    Article  CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Article  CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V (2010) Live and let die—Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol 89:194–199

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loehrer M, Langenbach C, Goellner K, Conrath U, Schaffrath U (2008) Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust. Mol Plant Microbe Interact 21:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Mellersh DG, Heath MC (2003) An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol Plant Microbe Interact 16:398–404

    Article  CAS  PubMed  Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    Article  CAS  PubMed  Google Scholar 

  • Midoh N, Iwata M (1996) Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9–18

    Article  CAS  PubMed  Google Scholar 

  • Mysore KS, Ryu CM (2004) Nonhost resistance: how much do we know? Trends Plant Sci 9:97–104

    Article  CAS  PubMed  Google Scholar 

  • Niks R (1983a) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60–64

    Article  Google Scholar 

  • Niks R (1983b) Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology 73:64–66

    Article  Google Scholar 

  • Qiu DY et al (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  CAS  PubMed  Google Scholar 

  • Roelfs AP, Bushnell WR (1985) The cereal rusts. Vol. II: diseases, distribution, epidemiology and control. Academic Press, Orlando

    Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125

    Article  CAS  PubMed  Google Scholar 

  • Shafiei R, Hang C, Kang JG, Loake GJ (2007) Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Mol Plant Pathol 8:773–784

    Article  CAS  PubMed  Google Scholar 

  • Sohn KH, Saucet SB, Clarke CR, Vinatzer BA, O’Brien HE, Guttman DS, Jones JDG (2012) HopAS1 recognition significantly contributes to Arabidopsis nonhost resistance to Pseudomonas syringae pathogens. New Phytol 193:58–66

    Article  CAS  PubMed  Google Scholar 

  • Staples RC (2000) Research on the rust fungi during the twentieth century. Annu Rev Phytopathol 38:49–69

    Article  CAS  PubMed  Google Scholar 

  • Staub T, Dahmen H, Schwinn F (1974) Light-and scanning electron microscopy of cucumber and barley powdery mildew on host and nonhost plants. Phytopathology 64:364–372

    Article  Google Scholar 

  • Stein M et al (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stokstad E (2007) Deadly wheat fungus threatens world’s breadbaskets. Science 315:1786–1787

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6:351–357

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Voegele RT, Mendgen KW (2011) Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica 179:41–55

    Article  Google Scholar 

  • Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS (2007) Histochemical studies on the accumulation of reactive oxygen species (O2 and H2O2) in the incompatible and compatible interaction of wheat—Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 71:230–239

    Article  CAS  Google Scholar 

  • Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski T et al (2009) Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol 150:1733–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wyand RA, Brown JK (2003) Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co-evolution. Mol Plant Pathol 4:187–198

    Article  CAS  PubMed  Google Scholar 

  • Yuan YX et al (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility Plant. Biotechnol J 5:313–324

    CAS  Google Scholar 

  • Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34:768–777

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2011) Histological and molecular studies of the non-host interaction between wheat and Uromyces fabae. Planta 234:979–991

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (No. 2013CB127700), the Modern Agro-industry Technology Research System in China (No. CARS-3-1-11), and the 111 Project from the Ministry of Education of China (No. B07049).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Kang.

Additional information

Handling Editor: Adrienne R. Hardham

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Yao, J., Zhang, H. et al. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens. Protoplasma 252, 1167–1179 (2015). https://doi.org/10.1007/s00709-014-0750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0750-9

Keywords

Navigation