Skip to main content
Log in

Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The genus Asparagus comprises three subgenera of cladode bearing plants: Protasparagus, Asparagus, and Myrsiphyllum. The interspecific delimitation of the subgenus Protasparagus is ill-defined till date. In the present study, interspecific phylogenetic relationships among nine taxa of Protasparagus based on ribosomal DNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequence and the chloroplast DNA trnL intron sequence conservation with their cladode morphology, anatomy, and stomatal characteristics have been analyzed for the first time. The monophyletic subgenus Protasparagus could be resolved into four strongly supported distinct subclades (I, II, III and IV) suggesting that the rDNA and cpDNA molecular phylogenies are explicitly congruent with the cladode characteristics of the subgenus Protasparagus. The present study also confirms the existing subgeneric classification of the genus Asparagus with the monophyletic origin of the dioecious subgenus Asparagus. The present work brings out phylogenetic and taxonomic relationships within the studied taxa of the subgenus Protasparagus therefore providing important background information for further studies on biogeography of a wide range of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phyl Evol 29:417–434

    Article  CAS  Google Scholar 

  • Arber A (1924) Myrsiphyllum and Asparagus: a morphological study. Ann Bot 38:635–659

    Google Scholar 

  • Baker JG (1875) Revision of the genera and species of Asparagaceae. J Linn Soc 14:508–632

    Article  Google Scholar 

  • Castro P, Gil J, Cabrera A, Moreno R (2013) Assessment of genetic diversity and phylogenetic relationships in Asparagus species related to Asparagus officinalis. Genet Resour Crop Evol 60:1275–1288

    Article  Google Scholar 

  • Clifford HT, Conran JG (1987) Asparagaceae. In: George AS (ed) Flora of Australia. Australian Government Publishing Service, Canberra, pp 159–164

    Google Scholar 

  • Cooney-Sovetts C, Sattler R (1987) Phylloclade development in the Asparagaceae: an example of homoeosis. Bot J Linn Soc 94:327–371

    Article  Google Scholar 

  • Dahlgren RMT, Clifford HT (1982) The monocotyledons: a comparative study. Academic, London

    Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of monocotyledons: structure, evolution, and taxonomy. Springer, Berlin

    Book  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fukuda T, Ashizawa H, Suzuki R, Ochiai T, Nakamura T, Kanno A, Kameya T, Yokoyama J (2005) Molecular phylogeny of the genus Asparagus (Asparagaceae) inferred from plastid petB intron and petD-rpoA intergenic spacer sequences. Plant Spec Biol 20:121–132

    Article  Google Scholar 

  • Fukuda T, Song I, Ito T, Nakayama H, Hayakawa H, Minamiya Y, Arakawa R, Kanno A, Yokoyama J (2012) Comparing with phylogenetic trees inferred from cpDNA, ITS sequences and RAPD analysis in the genus Asparagus (Asparagaceae). Environ Control Biol 50:13–18

    Article  CAS  Google Scholar 

  • Gopal BV, Shah GL (1970) Observations on normal and abnormal stomatal features in four species of Asparagus. Am J Bot 57:665–669

    Article  Google Scholar 

  • Guvenc A, Koyuncu M (2002) Studies on the anatomical structure of cladodes of Asparagus L. species (Liliaceae) in Turkey. Israel J Plant Sci 50:51–65

    Article  Google Scholar 

  • Idu M, Olorunfemi DI, Omonhinmin AC (2000) Systematics value of stomata in some Nigerian hardwood-species of Fabaceae. Plant Biosyst 134:53–60

    Article  Google Scholar 

  • Kanno A, Yokoyama J (2011) Asparagus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vegetables. Springer-Verlag Berlin, Heidelberg, pp 23–42

    Chapter  Google Scholar 

  • Kar DK, Sen S (1985) Chromosome characteristics of Asparagus—Sapogenin yielding plant. Cytologia 50:147–155

    Article  Google Scholar 

  • Kubota S, Konno I, Kanno A (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific cross ability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124:345–354

    Article  PubMed  Google Scholar 

  • Lee YO, Kanno A, Kameya T (1997) Phylogenetic relationships in the genus Asparagus based on the restriction enzyme analysis of the chloroplast DNA. Breed Sci 47:375–378

    CAS  Google Scholar 

  • Malcomber ST, Demissew S (1992) The status of Protasparagus and Myrsiphyllum in the Asparagaceae. Kew Bull 48:63–78

    Article  Google Scholar 

  • Metcalfe CR (1961) The anatomical approach to systematics. General introduction with special reference to recent work on monocotyledons. In: Recent Advances in Botany. Canada: University of Toronto Press. pp 146–150

  • Nakayama H, Yamaguchi T, Tsukaya H (2012a) Acquisition and diversification of cladodes: leaf-like organs in the genus Asparagus. Plant Cell 24:929–940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama H, Yamaguchi T, Tsukaya H (2012b) Cladodes, leaf-like organs in Asparagus, show the significance of co-option of pre-existing genetic regulatory circuit for morphological diversity of plants. Plant Sig Behavior 7:964–969

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nishizawa T, Watano Y (2000) Primer pairs suitable for PCR-SSCP analysis of chloroplast DNA in angiosperms. J Phytogeogr Taxon 48:63–66

    Google Scholar 

  • Obermeyer AA (1983) Protasparagus Oberm., nom. nov.: new combinations. S Afr J Bot 2:243–244

    Google Scholar 

  • Obermeyer AA, Immelman KL (1992) Protasparagus. In: deWinter, B., Killick, D. J. B., Leistner, O.A., (eds) Flora of Southern Africa: which deals with the territories of the Republic of South Africa, Basutoland, Swaziland and South West Africa. Botanical Research Institute. Pretoria, South Africa. 5(3):11–70

  • Peterson A, John H, Koch E, Peterson J (2004) A molecular phylogeny of the genus Gagea (Liliaceae) in Germany inferred from non-coding chloroplast and nuclear DNA sequences. Plant Syst Evol 245:145–162

    Article  CAS  Google Scholar 

  • Reginato MA, Reinoso H, Llanes AS, Luna MV (2013) Stomatal abundance and distribution in Prosopis strombulifera plants growing under different iso-osmotic salt treatments. Am J Plant Sci 4:80–90

    Article  Google Scholar 

  • Stajner N, Bohance B, Javornik B (2002) Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Sci 162:931–937

    Article  CAS  Google Scholar 

  • Stebbins GL, Kush GS (1961) Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. Am J Bot 48:51–59

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • The Angiosperm Phylogeny Group (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Tripathi S, Mondal AK (2012) Comparative (quantitative and qualitative) studies of stomata of selected six medicinally viable species of Cassia L. Int J LifeSc Bt Pharm Res 1:104–113

    Google Scholar 

  • Van-Cotthem WRJ (1970) A classification of stomatal types. Bot J Linn Soc 63:235–246

    Article  Google Scholar 

  • Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF (2012) Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PLoS One 7:e40080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the CNH, Botanical Survey of India, Howrah—711103 for taxonomic identification, and Dr. Biswajit Ghosh, Ramakrishna Mission Vivekananda Centenary College, Rahara, for providing the Asparagus officinalis plants. Financial assistance from the Council of Scientific and Industrial Research (CSIR), Govt. of India to SJ [Sanction no. 38(1317)/12/EMR-II] is duly acknowledged. PSS is grateful to the University Grant Commission for the RFSMS Fellowship award [F. 5-21/2007 (BSR)].

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Maximum parsimony phylogeny of the entire genus Asparagus based on rDNA ITS1-5.8S-ITS2 sequences data. Numbers beneath nodes are Bootstrap support (BS) indices. (GIF 49 kb)

High resolution image (TIFF 858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P.S., Ray, S., Sengupta, M. et al. Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa. Protoplasma 252, 1121–1134 (2015). https://doi.org/10.1007/s00709-014-0746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0746-5

Keywords

Navigation