Skip to main content
Log in

Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Cotton is mostly cultivated under rain-fed conditions in India, thus faces frequent drought conditions during its life cycle. Drought being a major stress factor responsible for yield penalty, there has always been a high priority to generate knowledge on adaptation and tolerance of cotton. In the present study, four cotton varieties, JKC-770 and KC-2 (Gossypium hirsutum), and JKC-717 and RAHS-187(Gossypium herbaceum), were imposed to drought. Under drought condition, differential changes in physiological characters like net photosynthesis, transpiration, stomatal conductance, chlorophyll fluorescence, relative water content (RWC), and predawn water potential (ψ 0) showed a change. While proline, malondialdehyde (MDA), and glutathione-S-transferase (GST) content increased along with a concomitant change in the expression of their associated genes. Under moderate stress, tolerant varieties maintain lower ψ 0 probably due to higher proline content as compared to sensitive varieties. Cyclic electron flow (CEF) also plays an important role in tolerance under mild water stress in G. hirsutum varieties. CEF not only activates at high light but also initiates at a very low light intensity. Expression analysis of genes reveals that drought-tolerant varieties showed enhanced detoxifying mechanism by up-regulation of asparagine synthase (AS), glutathione-S-transferase (GST), and methyl glyoxalase (GlyI) genes under drought stress. Up-regulation of Δ1-pyrroline-5-carboxylase synthase (Δ1P5CS) enhanced accumulation of proline, an osmolyte, under drought in tolerant varieties. While the drought-sensitive varieties showed up-regulation of ethylene responsive factor (ERF) and down-regulation of WRKY70 responsible for senescence of the leaf which correlated well with the high rate of leaf fall in sensitive varieties under water stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Net photosynthesis rate

ABA:

Abscisic acid

AS:

Asparagine synthase

CDNB:

1-Chloro-2,4-dinitrobenzene

CEF:

Cyclic electron flow

DNP-GS:

S-(2,4-dinitrophenyl) glutathione

DW:

Dry weight

E :

Transpiration rate

ERD:

Early response to dehydration

ERF:

Ethylene responsive factor

ETR:

Electron transport rate

F 0 :

Minimum fluorescence of a dark-adapted leaf

F m :

Maximum fluorescence of a dark-adapted leaf under a light saturating flash

F v :

Maximum variable fluorescence

F v/F m :

Maximum photochemical efficiency of PSII

FW:

Fresh weight

GlyI:

Methyl glyoxalase

g s :

Stomatal conductance

GSH:

Reduced glutathione

GST:

Glutathione-S-transferase

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

PGM:

Phosphoglucomutase

PLD:

Phospholipase D

PPFD:

Photosynthetic photon flux density

PS:

Photosystem

ROS:

Reactive oxygen species

RWC:

Relative water content

Ser/Thr PPase:

Serine/threonine protein phosphatase

TBA:

2-Thiobarbituric acid

TF:

Transcription factor

TW:

Turgid weight

WUE:

Water use efficiency

Y(II):

Photochemical quantum yield of PSII

Y(NA):

Fraction of P700 reaction centers which cannot be oxidized at given state or photochemical quantum yield of PSI due to acceptor side limitations

Y(ND):

Fraction of overall P700 that is oxidized in a given state or photochemical quantum yield of PSI due to donor side limitations

Y(NPQ):

Photochemical quantum yield due to regulated energy dissipation

Δ1P5CS:

Δ1-Pyrroline-5-carboxylase synthetase

ψ 0 :

Predawn leaf water potential

References

  • Bargmann BO, Laxalt AM, Ter Riet B, Van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Prakash NS, Pooggin M, Hohn T, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22:169–181

    Article  CAS  Google Scholar 

  • Bianchi MW, Roux C, Vartanian N (2002) Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant 116:96–105

    Article  CAS  PubMed  Google Scholar 

  • Blum A, Zhang J, Nguyen HT (1999) Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crop Res 64:287–291

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11

    Article  CAS  Google Scholar 

  • Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  CAS  PubMed  Google Scholar 

  • Chapman S, Schenk P, Kazan K, Manners J (2001) Using biplots to interpret gene expression patterns in plants. Bioinformatics 18:202–204

    Article  Google Scholar 

  • Chen Y, Liu Z-H, Feng L, Zheng Y, Li D-D, Li X-B (2013) Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought. PLoS ONE 8(11):e80879. doi:10.1371/journal.pone.0080879

    Article  PubMed Central  PubMed  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  CAS  PubMed  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Madesis P, Mudd EA, Day A, Edwards R (2008) Binding and glutathione conjugation of porphyrinogens by plant glutathione transferases. J Biol Chem 283:20268–20276

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP (2000) The role of glutathione transferases in herbicide metabolism. In: Cobb AH, Kirkwood RC (eds) Herbicides and their mechanisms of action. Sheffield Academic Press Ltd, Sheffield, pp 38–71

    Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antiox Red Signal 11:861–905

    Article  CAS  Google Scholar 

  • Guo R, Yu F, Gao Z, An H, Cao X, Guo X (2011) GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 38:49–58

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • Hanson KR, McHale NA (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol 88:838–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of D1-pyrroline- 5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    Article  CAS  PubMed  Google Scholar 

  • Katagiri T, Takahashi S, Shinozaki K (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDd, in dehydration inducible accumulation of phosphatidic acid in stress signalling. Plant J 26:595–605

    Article  CAS  PubMed  Google Scholar 

  • Li ZS, Zhen RG, Rea PA (1995) 1-Chloro 2, 4-dinitro benzene elicited in vacuolar glutathione-S-conjugate transport activity. Plant Physiol 109:177–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Besseau S, Törönen P, Sipari N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200:457–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M, Tomizawa K (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves: relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence. Plant Cell Physiol 46:629–737

    Article  CAS  PubMed  Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Júnior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. x Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Babu RC, Blum A (2007) Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition. Some implications for the energetics of photosynthesis. Biochim Biophys Acta 639:77–98

    Article  CAS  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Deepak Prabhakar Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 30:619–627

    Article  CAS  Google Scholar 

  • Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo C, Kollist H, Albert A, Rodriguez PL (2013) The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATA SE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol 163:441–455

  • Ranjan A, Nigam D, Asif MH, Singh R, Ranjan S, Mantri S, Pandey N, Trivedi I, Rai KM, Jena SN, Koul B, Tuli R, Pathre UV, Sawant SV (2012) Genome wide expression profiling of two accession of G. herbaceum L. in response to drought. BMC Genomics 13:94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Sekmen AH, Ozgur R, Uzilday B, Turkan I (2014) Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot 99:141–149

    Article  CAS  Google Scholar 

  • Singh P, Kairon MS (2013) Cotton varieties and hybrids. CICR Technical Bulletin 13 (www.cicr.org.in) Accessed 16 August 2014

  • Singh R, Ranjan S, Nayaka S, Pathre UV, Shirke PA (2013) Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl. in response to light and water stress. Acta Physiol Plant 35:1605–1615

    Article  CAS  Google Scholar 

  • Singh R, Naskar J, Pathre UV, Shirke PA (2014) Reflectance and cyclic electron flow as an indicator of drought stress in cotton (Gossypium hirsutum). Photochem Photobiol 90:544–551

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Yamaguchi-Shinozaki K, Kamada H, Giraudat J, Shinozaki K (1999) Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol 40:119–123

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Blake TJ, Boyle TJB (1992) Drought tolerance in faster- and slower-growing black spruce (Picea mariana) progenies: II. Osmotic adjustment and changes of soluble carbohydrates and amino acids under osmotic stress. Physiol Plant 85:645–651

    Article  CAS  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agro 71:193–231

    Article  Google Scholar 

  • Veena RVS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation, and its overexpression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation. Plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liua D, Suna J, Zhanga A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    Article  Google Scholar 

  • Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M, Ma YZ (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280:497–508

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Da1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101:9508–9513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang W-C (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS ONE 8(11):e80218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India (Grant No. OLP 085). A Senior Research Fellowship provided to RS and NP by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, is gratefully acknowledged.

Conflict of interest

The authors wish to state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod A. Shirke.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Pandey, N., Naskar, J. et al. Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species. Protoplasma 252, 423–438 (2015). https://doi.org/10.1007/s00709-014-0686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0686-0

Keywords

Navigation