Skip to main content
Log in

Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish J Biol 29:29–34

  • Alexander M (1991) Introduction to soil microbiology. Krieger, NY, USA, 467p

    Google Scholar 

  • Baldani JI, Krieg NR, Baldani VLD, Hartmannand A, Dobereiner J (2005) Genus II. Azospirillum. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey's manual of systematic bacteriology, vol 2C. Springer, New York, USA, pp 7–26

    Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bhaduri S, Demchick PH (1983) Simple and rapid method for disruption of bacteria for protein studies. Applied Environmental Microbiology 46:941–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsingh NB, Reichardt W, Okuyama H (2002) Effect of different cultivars on population of ammonia-oxidizing bacteria in root environment of rice. Appl Environ Microbial 68:3067–3075

    Article  CAS  Google Scholar 

  • Caballero-Mellado J, Lopez-Reyes L, Bustillos-Cristales R (1999) Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense. FEMS Microbiol Lett 178:283–288

    Article  CAS  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Collee JG, Miles PS (1989) Tests for identification of bacteria. In: Collee JG, Duguid JP, Fraser AG, Marmion BP (eds) Practical medical microbiology. Churchil Livingstone, NY, USA, pp 141–160

    Google Scholar 

  • Dangar TK, Basu PS (1991) Abscisic acid production in culture by some Rhizobium spp. of leguminous trees and pulses. Folia Microbiol 36:527–532

  • Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP (2007) Caracterizac¸a˜o de rizo´bios isolados de Jacatupe´ cultivado em solo salino no Estado de Pernanbuco, Brasil. Bragantia 66:497–504

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A (1988) Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp. Plant and Soil l l0:225–238

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hill S, Sawers G (2000) Azotobacter. In: Lederberg J (ed) Encyclopedia of microbiology, vol. 1A-Cth edn. Academic, NY, USA, pp 359–371

    Google Scholar 

  • Jensen RB, Dam M, Gerdes K (1994) Partitioning of plasmid R1. The parA operon is autoreguated by ParR and its transcription is highly stimulated by a downstream activating element. J Mol Biol 236:1299–1309

  • Jimenez DJ, Montana JS, Martinez MM (2011) Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown colombian soils. Brazilian J Microbiol 42:846–858.

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan T, Ponmurugan P (2010) Response of paddy (Oryza sativa L.) varieties to Azospirillum brasilense inoculation. J Physiol 2:08–13

    Google Scholar 

  • Kenmore P, (2003) Sustainable rice production, food security and enhanced livelihoods in “Rice Science: In: Mew TW, Brar DS, Peng S, Dawe D, Hardy B (eds.). Innovations and Impact for Livelihood. Beijing, China, p 27–34

  • Kennedy C (2005a) Genus I. Beijernckia. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garriety GM, Goodfellow M, Krieg NR, Rainey FA, Schlifer KH (eds) Bergey's manual of systematic bacteriology, vol 2C. Springer, New York, USA, pp 423–432

    Chapter  Google Scholar 

  • Kennedy C (2005b) Genus IV. Derxia. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garriety GM, Goodfellow M, Krieg NR, Rainey FA, Schlifer KH (eds) Bergey's manual of systematic bacteriology, vol 2C, eds. Springer, New York, USA, pp 671–674

    Chapter  Google Scholar 

  • Kennedy C, Rudnick P, MacDonald ML, Melton T (2005) Genus III. Azotobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey's manual of systematic bacteriology, vol 2B. Springer, New York, USA, pp 384–402

    Google Scholar 

  • Khan MR, Talukdar NC, Thakur D (2003) Detection of Azospirillum and PSB in rice rhizosphere soil by protein and antibiotic resistance profile and their effect on grain yield of rice. Indian J Biotechnol 2:246–250

    Google Scholar 

  • Kluepfel DA (1993) The behaviour and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 31:441–472

    Article  Google Scholar 

  • Lakshmi-Kumari M, Lakshmi V, Nalini PA, Subba-Rao NS (1980) Reactions of Azospirillum to certain dyes and their usefulness in enumeration of the organisms. Curr Sci 49:438–439

  • Martin-Didonet CCG, Chubatsu LS, Souza EM, Kleina M, Rego FGM, Rigo LU, Yates MG, Pedrosa FO (2000) Genome structure of the genus Azospirillum. J Bact 182:4113–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mot RD, Vanderhyden J (1989) Application of two-dimensional protein analysis for strain finger printing and mutant analysis of Azospirillum sp. Canadian J Microbiol 35:960–967

    Article  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 3:85–88

  • Palleroni NJ (2005) Genus I. Pseudomonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Part B. The gammaproteobacteria. Springer, New York, p 323–379

  • Patel PH, Patel JP, Bhatt SA (2013) Characterization and phylogenetic relatedness of Azotobacter Salinestris. J Microbiol Biotechnol Res 3:65–70

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculants formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Pot B, Gills M (2005) Genus III. Aquaspirillum. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garriet GM, Goodfellow M, Krieg NR, Rainey FA, Schlifer KH (eds) Bergey's manual of systematic bacteriology, 2cth edn. Springer, New York, USA, pp 801–823

    Chapter  Google Scholar 

  • Postgate JR (1982) The fundamentals of Nitrogen fixation. Cambridge University Press. p 60–102

  • Reddy BP, Reddy KRN, Rao MS, Rao KS (2008) Efficacy of antimicrobial metabolites of pseudomonas fluorescens against rice fungal pathogens. Curr Trends Biotechnol Pharm 2:178–182

  • Rubio MB, Hermosa MR, Keck E, Monte E (2005) Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb Ecol 49:25–33

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Medic Res 21:1–30

    Google Scholar 

  • Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2013) Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains from rice fields for crop improvement. Protoplasma. doi:10.1007/s00709-013-0547-2

    PubMed  Google Scholar 

  • Sahrawat KL (2000) Macro and micronutrients removed by upland and lowland rice cultivars in West Africa. Commun Soil Sci Plant Anal 31:717–723

    Article  CAS  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92:317–322

    CAS  Google Scholar 

  • Samuel S, Muthukkaruppan SM (2011) Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil. Curr Bot 2:22–25

    CAS  Google Scholar 

  • SantAnna FH, Almeida LGP, Cecagno R, Reolon LA, Siqueira FM, Machado MRS, Vasconcelos ATR, Schrank IS (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genomics 12:409–423

    Article  CAS  Google Scholar 

  • Shrestha RK, Maskey SI (2005) Associative nitrogen fixation in lowland rice. Nepal Agric Res J 6:112–121

    Google Scholar 

  • Singh MS (2006) Cereal crops response to Azotobacter—a review. Agric Rev 27:229–231

    Google Scholar 

  • Smibert R, Krieg NR (1995) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood W, Krieg E (eds) Methods for general and molecular bacteriology. American Soc Microbiol, Washington DC, pp 607–654

    Google Scholar 

  • Strzelczyk E, Kampert M, Li CY (1994) Cytokinin like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60

  • Subbarao NS (2007) Soil microorganisms and plant growth. Oxford IBH, New Delhi

    Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Microbiol 37:1016–1024

    CAS  Google Scholar 

  • Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Yushmanov SV, Chumakov KM (1988) Algorithms of the maximum topological similarity phylogenetic trees construction. Mol Genet Microbiol Virol 3:9–15

  • Zaki N, Gomaa AM, Galal A, Farrag AA (2009) The associative impact of certain diazotrophs and farmyard manure on two rice varieties grown in a newly cultivated land. Res J Agric Biol Sci 5:185–190

    CAS  Google Scholar 

  • Zeigler RS, Adams A (2008) The relevance of rice. Rice 1:3–10

    Article  Google Scholar 

Download references

Acknowledgments

Work on plant stress tolerance in NT's laboratory is partially supported by the Department of Science and Technology (DST) and the Department of Biotechnology (DBT), Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Additional information

Handling Editor: Bhumi Nath Tripathi

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 109 kb)

ESM 2

(PPT 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, R.K., Ansari, M.W., Pradhan, M. et al. Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251, 943–953 (2014). https://doi.org/10.1007/s00709-013-0607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0607-7

Keywords

Navigation