Skip to main content
Log in

GTPase Ran strongly accumulates at the kinetochores of somatic chromosomes in the spermatogonial mitoses of Acricotopus lucidus (Diptera, Chironomidae)

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Unequal chromosome segregation and spindle formation occurs in the last gonial mitosis in the germ line of the chironomid Acricotopus lucidus. During this differential mitosis, all germ line-limited chromosomes (=Ks) migrate undivided to only one pole of the cell, while the somatic chromosomes (=Ss) first remain in the metaphase plane, and with the arrival of the Ks at the pole, they then separate equally. The evolutionarily conserved GTPase Ran plays a crucial role in many cellular processes. This includes the regulation of microtubule nucleation and stabilisation at kinetochores and of spindle assembly during mitosis, which is promoted by a RanGTP concentration gradient that forms around the mitotic chromosomes (Kalab et al. in Science 295:2452–2456, 2002, Nature 440:697–701, 2006). In the present study, a strong accumulation of Ran was detected by immunofluorescence at the kinetochores of the Ss in normal gonial and differential gonial mitoses of males of A. lucidus. In contrast, no Ran accumulation was observed at the kinetochores of the Ss in the metaphases of brain ganglia mitoses or of aberrant spermatocytes or in metaphases I and II of spermatocyte meiotic divisions. Likewise, there was no accumulation at the kinetochores of Drosophila melanogaster mitotic chromosomes from larval brains. The specific accumulation of Ran at the kinetochores of the Ss in differential gonial mitoses of A. lucidus strongly suggests that Ran is involved in a mechanism acting in this exceptional mitosis, which retains the Ss at the metaphase plane and prevents a premature separation and unequal segregation of the Ss during monopolar migration of the Ks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Arnaoutov A, Dasso M (2003) The Ran GTPase regulates kinetochore function. Dev Cell 5:99–111

    Article  CAS  PubMed  Google Scholar 

  • Bamba C, Bobinnec Y, Fukuda M, Nishida E (2002) The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 12:503–507

    Article  CAS  PubMed  Google Scholar 

  • Bantock CR (1970) Experiments on the chromosome elimination in the gall midge, Mayetiola destructor. J Embryol Exp Morphol 24:257–286

    CAS  PubMed  Google Scholar 

  • Bauer H, Beermann W (1952) Der Chromosomencyclus der Orthocladiinen (Nematocera, Diptera). Z Naturforsch 7b:557–563

    Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–181

    Article  CAS  PubMed  Google Scholar 

  • Casanova CM, Rybina S, Yokoyama H, Karsenti E, Mattaj IW (2008) Hepatoma up-regulated protein is required for chromatin-induced microtubule assembly independently of TPX2. Mol Biol Cell 19:4900–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477

    Article  CAS  PubMed  Google Scholar 

  • Dasso M (2006) Ran at kinetochores. Biochem Soc Trans 34:711–715

    Article  CAS  PubMed  Google Scholar 

  • Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104:83–93

    Article  CAS  PubMed  Google Scholar 

  • Halpin D, Kalab P, Wang J, Weis K, Heald R (2011) Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts. PLoS Biol 9:e1001225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) Sumo-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalab P, Heald R (2008) The RanGTP gradient – a GPS for the mitotic spindle. J Cell Sci 121:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Kalab P, Weis K, Heald R (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295:2452–2456

    Article  CAS  PubMed  Google Scholar 

  • Kalab P, Pralle A, Isacoff EY, Heald R, Weis K (2006) Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440:697–701

    Article  CAS  PubMed  Google Scholar 

  • Koizumi K, Strivers C, Brody T, Zangeneh S, Mozer B, Odenwald WF (2001) A search for Drosophila neural precursor genes identifies ran. Dev Genes Evol 221:67–75

    Article  Google Scholar 

  • Lee Y-P, Wong C-H, Chan K-S, Lai S-K, Koh C-G, Li H-Y (2012) In vivo FRET imaging revealed a regulatory role of RanGTP in kinetochore-microtubule attachments via Aurora B kinase. PLoS ONE 7:e45836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redi CA, Garagna S, Zacharias H, Zuccotti M, Capanna E (2001) The other chromatin. Chromosoma 110:136–147

    Article  CAS  PubMed  Google Scholar 

  • Richards SA, Loundsbury KM, Macara IG (1995) The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GTP-bound state and mediates interactions with RCC1, Ran-GAP, and HTF9A/RanBP1. J Biol Chem 270:14405–14411

    Article  CAS  PubMed  Google Scholar 

  • Roscioli E, Di Francesco L, Bolognesi A, Giubettini M, Orlando S, Harel A, Schinina ME, Lavia P (2012) Importin-ß negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. J Cell Biol 196:435–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silljé HHW, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran-importin β-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16:731–742

    Article  PubMed  Google Scholar 

  • Silverman-Gavrila RV, Wilde A (2006) Ran is required before metaphase for spindle assembly and after metaphase for chromosome segregation and spindle midbody organization. Mol Biol Cell 17:2069–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiber W (1988) G-banding of germ line limited chromosomes in Acricotopus lucidus (Diptera, Chironomidae). Chromosoma 97:231–234

    Article  Google Scholar 

  • Staiber W (2000) Immunocytological and FISH analysis of pole cell formation and soma elimination of germ line-limited chromosomes in the chironomid Acricotopus lucidus. Cell Tissue Res 302:189–197

    Article  CAS  PubMed  Google Scholar 

  • Staiber W (2007) Asymmetric distribution of mitochondria and of spindle microtubules in opposite directions in differential mitosis of germ line cells in Acricotopus. Cell Tissue Res 329:197–203

    Article  PubMed  Google Scholar 

  • Staiber W (2008) Centrosome hyperamplification with the formation of multiple asters and programmed chromosome inactivation in aberrant spermatocytes during male meiosis in Acricotopus. Cell Tissue Res 334:81–91

    Article  PubMed  Google Scholar 

  • Staiber W (2012) Germ line-limited and somatic chromosomes of Acricotopus lucidus differ in distribution and timing of alterations of histone modifications in male gonial mitosis and meiosis. Chromosome Res 20:717–734

    Article  CAS  PubMed  Google Scholar 

  • Staiber W, Schiffkowski C (2000) Structural evolution of the germ line-limited chromosomes in Acricotopus. Chromosoma 109:343–349

    Article  CAS  PubMed  Google Scholar 

  • Staiber W, Wech I, Preiss A (1997) Isolation and localization of a germ line-specific highly repetitive DNA family in Acricotopus lucidus (Diptera, Chironomidae). Chromosoma 106:267–275

    Article  CAS  PubMed  Google Scholar 

  • Torosantucci L, De Luca M, Guargualini G, Lavia P, Degrassi F (2008) Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol Biol Cell 19:1873–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge University Press, Cambridge, pp 500–546

    Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Anette Preiss and Hannes Schmid, University of Hohenheim, for their support and Prof. Neil Jones, Biological Sciences, Aberystwyth University, Wales, for the helpful suggestions and corrections to the manuscript. This work was supported by a grant of the Deutsche Forschungsgemeinschaft (Sta 462/5-1).

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Staiber.

Additional information

Handling Editor: Patricia Wadsworth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staiber, W. GTPase Ran strongly accumulates at the kinetochores of somatic chromosomes in the spermatogonial mitoses of Acricotopus lucidus (Diptera, Chironomidae). Protoplasma 251, 979–984 (2014). https://doi.org/10.1007/s00709-013-0578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0578-8

Keywords

Navigation