Skip to main content
Log in

Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model

  • New Ideas in Cell Biology
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the “classical model” for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR–ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour. Firstly, unlike mammalian cells where the sorting receptor for lysosomal hydrolases recognizes its ligand in the TGN, the available data suggests that in plants VSRs interact with vacuolar cargo ligands already in the endoplasmic reticulum. Secondly, the evidence supporting the packaging of VSR–ligand complexes into CCV at the TGN is not conclusive. Thirdly, the prevacuolar compartment appears to have a pH unsuitable for VSR–ligand dissociation and lacks the retromer core and the sorting nexins needed for VSR recycling. We present an alternative model for protein sorting in the TGN that draws attention to the much overlooked role of Ca2+ in VSR–ligand interactions and which may possibly also be a factor in the sequestration of secretory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BFA:

Brefeldin A

CCV:

Clathrin-coated vesicle

ER:

Endoplasmic reticulum

ESCRT:

Endosomal sorting complex required for transport

LBD:

Lumenal binding domain

MPR:

Mannose 6-phosphate receptor

MVB:

Multivesicular body

TGN:

trans-Golgi network

VSR:

Vacuolar sorting receptor

References

  • Adam T, Bouhidel K, Der C, Robert F, Najid A, Simon-Plas F, Leborgne-Castel N (2012) Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells. FEBS Lett 586(19):3293–3298. doi:10.1016/j.febslet.2012.06.053

    CAS  PubMed  Google Scholar 

  • Balch WE, McCaffery JM, Plutner H, Farquhar MG (1994) Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76(5):841–852

    CAS  PubMed  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132(2):618–628. doi:10.1104/pp.103.021923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonza MC, De Michelis MI (2011) The plant Ca2+-ATPase repertoire: biochemical features and physiological functions. Plant Biol (Stuttg) 13(3):421–430. doi:10.1111/j.1438-8677.2010.00405.x

    CAS  Google Scholar 

  • Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris N (2002) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14(5):1077–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brodsky FM (2012) Diversity of clathrin function: new tricks for an old protein. Annu Rev Cell Dev Biol 28:309–336. doi:10.1146/annurev-cellbio-101011-155716

    CAS  PubMed  Google Scholar 

  • Chen X, Irani NG, Friml J (2011) Clathrin-mediated endocytosis: the gateway into plant cells. Curr Opin Plant Biol 14(6):674–682. doi:10.1016/j.pbi.2011.08.006

    CAS  PubMed  Google Scholar 

  • Christensen A, Svensson K, Thelin L, Zhang W, Tintor N, Prins D, Funke N, Michalak M, Schulze-Lefert P, Saijo Y, Sommarin M, Widell S, Persson S (2010) Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLoS ONE 5(6):e11342. doi:10.1371/journal.pone.0011342

    PubMed Central  PubMed  Google Scholar 

  • Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AA, Burton R, Kaiser BN, Tyerman SD, Leigh RA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23(1):240–257. doi:10.1105/tpc.109.072769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Contento AL, Bassham DC (2012) Structure and function of endosomes in plant cells. J Cell Sci 125(Pt 15):3511–3518. doi:10.1242/jcs.093559

    CAS  PubMed  Google Scholar 

  • Cullen PJ, Korswagen HC (2012) Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 14(1):29–37. doi:10.1038/ncb2374

    CAS  Google Scholar 

  • Curwin AJ, von Blume J, Malhotra V (2012) Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell 23(12):2327–2338. doi:10.1091/mbc.E11-09-0826

    CAS  PubMed Central  PubMed  Google Scholar 

  • daSilva LL, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O, Brandizzi F, Denecke J (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17(1):132–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • daSilva LL, Foresti O, Denecke J (2006) Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell 18(6):1477–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis CG, Goldstein JL, Sudhof TC, Anderson RG, Russell DW, Brown MS (1987) Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 326(6115):760–765. doi:10.1038/326760a0

    CAS  PubMed  Google Scholar 

  • De Marcos Lousa C, Gershlick DC, Denecke J (2012) Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. Plant Cell 24(5):1714–1732. doi:10.1105/tpc.112.095679

    PubMed Central  PubMed  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17(6):520–527

    CAS  PubMed  Google Scholar 

  • Ebine K, Miyakawa N, Fujimoto M, Uemura T, Nakano A, Ueda T (2012) Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 3(1):23–27. doi:10.4161/sgtp.18299

    PubMed Central  PubMed  Google Scholar 

  • Faini M, Beck R, Wieland FT, Briggs JA (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. doi:10.1016/j.tcb.2013.01.005

    PubMed  Google Scholar 

  • Fass D, Blacklow S, Kim PS, Berger JM (1997) Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 388(6643):691–693. doi:10.1038/41798

    CAS  PubMed  Google Scholar 

  • Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121(2):333–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foresti O, Denecke J (2008) Intermediate organelles of the plant secretory pathway: identity and function. Traffic 9(10):1599–1612

    CAS  PubMed  Google Scholar 

  • Foresti O, Gershlick DC, Bottanelli F, Hummel E, Hawes C, Denecke J (2010) A recycling-defective vacuolar sorting receptor reveals an intermediate compartment situated between prevacuoles and vacuoles in tobacco. Plant Cell 22:3992–4008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134(3):898–908. doi:10.1104/pp.103.032508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geisler M, Frangne N, Gomes E, Martinoia E, Palmgren MG (2000) The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124(4):1814–1827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147(4):1565–1574. doi:10.1104/pp.108.120287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59(1):169–178. doi:10.1111/j.1365-313X.2009.03851.x

    CAS  PubMed  Google Scholar 

  • Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52(3):329–341

    CAS  PubMed  Google Scholar 

  • Griffiths G, Ericsson M, Krijnse-Locker J, Nilsson T, Goud B, Soling HD, Tang BL, Wong SH, Hong W (1994) Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J Cell Biol 127(6 Pt 1):1557–1574

    CAS  PubMed  Google Scholar 

  • Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29(16):2700–2714. doi:10.1038/emboj.2010.181

    CAS  PubMed  Google Scholar 

  • Happel N, Honing S, Neuhaus JM, Paris N, Robinson DG, Holstein SE (2004) Arabidopsis mu A-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1. Plant J 37(5):678–693

    CAS  PubMed  Google Scholar 

  • Hara-Hishimura I, Takeuchi Y, Inoue K, Nishimura M (1993) Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J 4(5):793–800

    CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Shimada T (2006) Induction of specialized compartments from the ER. In: Plant Cell Monogr., vol 4. Springer, Berlin, pp 141–154

  • Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10(5):825–836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara-Nishimura I, Matsushima R, Shimada T, Nishimura M (2004) Diversity and formation of endoplasmic reticulum-derived compartments in plants. Are these compartments specific to plant cells? Plant Physiol 136(3):3435–3439. doi:10.1104/pp.104.053876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH (2007) Functional architecture of the retromer cargo-recognition complex. Nature 449(7165):1063–1067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinz G, Colanesi S, Hillmer S, Rogers JC, Robinson DG (2007) Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos. Traffic 8(10):1452–1464

    CAS  PubMed  Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4(3):307–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong B, Ichida A, Wang Y, Gens JS, Pickard BG, Harper JF (1999) Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum. Plant Physiol 119(4):1165–1176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horazdovsky BF, Davies BA, Seaman MN, McLaughlin SA, Yoon S, Emr SD (1997) A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 8(8):1529–1541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurley JH (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20(1):4–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irani NG, Di Rubbo S, Mylle E, Van den Begin J, Schneider-Pizon J, Hnilikova J, Sisa M, Buyst D, Vilarrasa-Blasi J, Szatmari AM, Van Damme D, Mishev K, Codreanu MC, Kohout L, Strnad M, Cano-Delgado AI, Friml J, Madder A, Russinova E (2012) Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8(6):583–589. doi:10.1038/nchembio.958

    CAS  PubMed  Google Scholar 

  • Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443(7107):106–109

    CAS  PubMed  Google Scholar 

  • Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12(3):313–329

    CAS  PubMed  Google Scholar 

  • Kang H, Kim SY, Song K, Sohn EJ, Lee Y, Lee DW, Hara-Nishimura I, Hwang I (2012) Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. Plant Cell 24(12):5058–5073. doi:10.1105/tpc.112.103481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H, Park M, Kim SJ, Hwang I (2005) Actin filaments play a critical role in vacuolar trafficking at the Golgi complex in plant cells. Plant Cell 17(3):888–902. doi:10.1105/tpc.104.028829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H, Kang H, Jang M, Chang JH, Miao Y, Jiang L, Hwang I (2010) Homomeric interaction of AtVSR1 is essential for its function as a vacuolar sorting receptor. Plant Physiol 154(1):134–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 91(8):3403–3407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23(5):1920–1931. doi:10.1105/tpc.111.083030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klumperman J, Hille A, Veenendaal T, Oorschot V, Stoorvogel W, von Figura K, Geuze HJ (1993) Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J Cell Biol 121(5):997–1010

    CAS  PubMed  Google Scholar 

  • Lam SK, Cai Y, Tse YC, Wang J, Law AH, Pimpl P, Chan HY, Xia J, Jiang L (2009) BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. Plant J 60:865–881

    CAS  PubMed  Google Scholar 

  • Langhans M, Forster S, Helmchen G, Robinson DG (2011) Differential effects of the brefeldin A analogue (6R)-hydroxy-BFA in tobacco and Arabidopsis. J Exp Bot 62(8):2949–2957. doi:10.1093/jxb/err007

    CAS  PubMed  Google Scholar 

  • Laval V, Chabannes M, Carriere M, Canut H, Barre A, Rouge P, Pont-Lezica R, Galaud J (1999) A family of Arabidopsis plasma membrane receptors presenting animal beta-integrin domains. Biochim Biophys Acta 1435(1–2):61–70

    CAS  PubMed  Google Scholar 

  • Lee Y, Jang M, Song K, Kang H, Lee MH, Lee DW, Zouhar J, Rojo E, Sohn EJ, Hwang I (2013) Functional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis. Plant Physiol 161(1):121–133. doi:10.1104/pp.112.210914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis MJ, Pelham HR (1992) Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68(2):353–364

    CAS  PubMed  Google Scholar 

  • Li YB, Rogers SW, Tse YC, Lo SW, Sun SS, Jauh GY, Jiang L (2002) BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar compartments. Plant Cell Physiol 43(7):726–742

    CAS  PubMed  Google Scholar 

  • Li X, Chanroj S, Wu Z, Romanowsky SM, Harper JF, Sze H (2008) A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process. Plant Physiol 147(4):1675–1689. doi:10.1104/pp.108.119909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu SH, Marks MS, Brodsky FM (1998) A dominant-negative clathrin mutant differentially affects trafficking of molecules with distinct sorting motifs in the class II major histocompatibility complex (MHC) pathway. J Cell Biol 140(5):1023–1037

    CAS  PubMed  Google Scholar 

  • Mach J (2012) Crosstown trafficking: the retromer complex component VPS29 and recycling of the vacuolar sorting receptor. Plant Cell 24:4776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda K, Kato Y, Sugiyama Y (2002) pH-dependent receptor/ligand dissociation as a determining factor for intracellular sorting of ligands for epidermal growth factor receptors in rat hepatocytes. J Control Release 82(1):71–82

    CAS  PubMed  Google Scholar 

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5(2):121–132

    CAS  PubMed  Google Scholar 

  • McGough IJ, Cullen PJ (2011) Recent advances in retromer biology. Traffic 12(8):963–971. doi:10.1111/j.1600-0854.2011.01201.x

    CAS  PubMed  Google Scholar 

  • Mills RF, Doherty ML, Lopez-Marques RL, Weimar T, Dupree P, Palmgren MG, Pittman JK, Williams LE (2008) ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol 146(1):116–128. doi:10.1104/pp.107.110817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mollenhauer HH, Morre DJ (1991) Perspectives on Golgi apparatus form and function. J Electron Microsc Tech 17(1):2–14. doi:10.1002/jemt.1060170103

    CAS  PubMed  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21(8):2341–2356. doi:10.1105/tpc.109.068395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65(2):309–318. doi:10.1111/j.1365-313X.2010.04423.x

    CAS  PubMed  Google Scholar 

  • Montero M, Alvarez J, Scheenen WJ, Rizzuto R, Meldolesi J, Pozzan T (1997) Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J Cell Biol 139(3):601–611

    CAS  PubMed  Google Scholar 

  • Morton WM, Ayscough KR, McLaughlin PJ (2000) Latrunculin alters the actin–monomer subunit interface to prevent polymerization. Nat Cell Biol 2(6):376–378. doi:10.1038/35014075

    CAS  PubMed  Google Scholar 

  • Neuhaus JM, Rogers JC (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38(1–2):127–144

    CAS  PubMed  Google Scholar 

  • Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147(4):1516–1526. doi:10.1104/pp.108.121798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P (2010a) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62(4):601–614

    CAS  PubMed  Google Scholar 

  • Niemes S, Langhans M, Viotti C, Scheuring D, Yan MS, Jiang L, Hillmer S, Robinson DG, Pimpl P (2010b) Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J 61(1):107–121

    CAS  PubMed  Google Scholar 

  • Ohno H, Aguilar RC, Yeh D, Taura D, Saito T, Bonifacino JS (1998) The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J Biol Chem 273(40):25915–25921

    CAS  PubMed  Google Scholar 

  • Oliviusson P, Heinzerling O, Hillmer S, Hinz G, Tse YC, Jiang L, Robinson DG (2006) Plant retromer, localized to the prevacuolar compartment and microvesicles in Arabidopsis, may interact with vacuolar sorting receptors. Plant Cell 18(5):1239–1252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson LJ, Hindsgaul O, Dahms NM, Kim JJ (2008) Structural insights into the mechanism of pH-dependent ligand binding and release by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 283(15):10124–10134. doi:10.1074/jbc.M708994200

    CAS  PubMed  Google Scholar 

  • Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115(1):29–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park M, Song K, Reichardt I, Kim H, Mayer U, Stierhof YD, Hwang I, Jurgens G (2013) Arabidopsis mu-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc Natl Acad Sci U S A 110(25):10318–10323. doi:10.1073/pnas.1300460110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeffer SR, Rothman JE (1987) Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem 56:829–852

    CAS  PubMed  Google Scholar 

  • Pourcher M, Santambrogio M, Thazar N, Thierry AM, Fobis-Loisy I, Miege C, Jaillais Y, Gaude T (2010) Analyses of sorting nexins reveal distinct retromer-subcomplex functions in development and protein sorting in Arabidopsis thaliana. Plant Cell 22(12):3980–3991. doi:10.1105/tpc.110.078451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richter S, Geldner N, Schrader J, Wolters H, Stierhof YD, Rios G, Koncz C, Robinson DG, Jurgens G (2007) Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448(7152):488–492

    CAS  PubMed  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749

    CAS  PubMed  Google Scholar 

  • Robatzek S, Wirthmueller L (2013) Mapping FLS2 function to structure: LRRs, kinase and its working bits. Protoplasma 250(3):671–681. doi:10.1007/s00709-012-0459-6

    CAS  PubMed  Google Scholar 

  • Robinson DG (1977) Plant cell wall synthesis. Adv Bot Res 5:89–151

    CAS  Google Scholar 

  • Robinson DG, Hinz G (1999) Golgi-mediated transport of seed storage proteins. Seed Sci Res 9(4):267–283

    CAS  Google Scholar 

  • Robinson Dg, Pimpl P (2013) Clathrin and post-Golgi trafficking: a very complicated issue. Trends Plant Sci (submitted)

  • Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6(8):615–625

    CAS  PubMed  Google Scholar 

  • Robinson DG, Pimpl P, Scheuring D, Stierhof YD, Sturm S, Viotti C (2012) Trying to make sense of retromer. Trends Plant Sci 17(7):431–439. doi:10.1016/j.tplants.2012.03.005

    CAS  PubMed  Google Scholar 

  • Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27:1112–1124

    Google Scholar 

  • Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus JM, Paris N (2010) The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. Plant Cell 22(8):2825–2837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanderfoot AA, Ahmed SU, Marty-Mazars D, Rapoport I, Kirchhausen T, Marty F, Raikhel NV (1998) A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci U S A 95(17):9920–9925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer M, Delgadillo MO, Zouhar J, Reynolds GD, Pennington JG, Jiang L, Liljegren SJ, Stierhof YD, De Jaeger G, Otegui MS, Bednarek SY, Rojo E (2013) MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. Plant Cell. doi:10.1105/tpc.113.111724

    Google Scholar 

  • Scheele U, Holstein SE (2002) Functional evidence for the identification of an Arabidopsis clathrin light chain polypeptide. FEBS Lett 514(2–3):355–360

    CAS  PubMed  Google Scholar 

  • Scherer PE, Lederkremer GZ, Williams S, Fogliano M, Baldini G, Lodish HF (1996) Cab45, a novel (Ca2+)-binding protein localized to the Golgi lumen. J Cell Biol 133(2):257–268

    CAS  PubMed  Google Scholar 

  • Scheuring D, Viotti C, Kruger F, Kunzl F, Sturm S, Bubeck J, Hillmer S, Frigerio L, Robinson DG, Pimpl P, Schumacher K (2011) Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23(9):3463–3481. doi:10.1105/tpc.111.086918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15(2):68–75

    CAS  PubMed  Google Scholar 

  • Seaman MN, Harbour ME, Tattersall D, Read E, Bright N (2009) Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122(Pt 14):2371–2382

    CAS  PubMed  Google Scholar 

  • Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Pimpl P, Jiang L (2013) Organelle pH in the Arabidopsis endomembrane system. Mol Plant. doi:10.1093/mp/sst079

    Google Scholar 

  • Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol 38(12):1414–1420

    CAS  PubMed  Google Scholar 

  • Shimada T, Watanabe E, Tamura K, Hayashi Y, Nishimura M, Hara-Nishimura I (2002) A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). Plant Cell Physiol 43(10):1086–1095

    CAS  PubMed  Google Scholar 

  • Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100(26):16095–16100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimada T, Koumoto Y, Li L, Yamazaki M, Kondo M, Nishimura M, Hara-Nishimura I (2006) AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins. Plant Cell Physiol 47(9):1187–1194

    CAS  PubMed  Google Scholar 

  • Spitzer C, Reyes FC, Buono R, Sliwinski MK, Haas TJ, Otegui MS (2009) The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21(3):749–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signalling: an emerging field. J Exp Bot 63(4):1525–1542. doi:10.1093/jxb/err394

    CAS  PubMed  Google Scholar 

  • Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J 46(1):95–110

    CAS  PubMed  Google Scholar 

  • Stierhof YD, Viotti C, Scheuring D, Sturm S, Robinson DG (2013) Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma 250(1):235–240. doi:10.1007/s00709-012-0399-1

    CAS  PubMed  Google Scholar 

  • Tahara H, Yokota E, Igarashi H, Orii H, Yao M, Sonobe S, Hashimoto T, Hussey PJ, Shimmen T (2007) Clathrin is involved in organization of mitotic spindle and phragmoplast as well as in endocytosis in tobacco cell cultures. Protoplasma 230(1–2):1–11. doi:10.1007/s00709-006-0226-7

    CAS  PubMed  Google Scholar 

  • Teh OK, Shimono Y, Shirakawa M, Fukao Y, Tamura K, Shimada T, Hara-Nishimura I (2013) The AP-1 mu adaptin is required for KNOLLE localization at the cell plate to mediate cytokinesis in Arabidopsis. Plant Cell Physiol. doi:10.1093/pcp/pct048

    PubMed  Google Scholar 

  • Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K (2009) A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21(4):1212–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16(3):672–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Weering JR, Verkade P, Cullen PJ (2010) SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin Cell Dev Biol 21(4):371–380

    PubMed  Google Scholar 

  • Vidali L, Hepler PK (2001) Actin and pollen tube growth. Protoplasma 215(1–4):64–76

    CAS  PubMed  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jurgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22(4):1344–1357

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Blume J, Duran JM, Forlanelli E, Alleaume AM, Egorov M, Polishchuk R, Molina H, Malhotra V (2009) Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J Cell Biol 187(7):1055–1069. doi:10.1083/jcb.200908040

    Google Scholar 

  • von Blume J, Alleaume AM, Cantero-Recasens G, Curwin A, Carreras-Sureda A, Zimmermann T, van Galen J, Wakana Y, Valverde MA, Malhotra V (2011) ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell 20(5):652–662. doi:10.1016/j.devcel.2011.03.014

    Google Scholar 

  • von Blume J, Alleaume AM, Kienzle C, Carreras-Sureda A, Valverde M, Malhotra V (2012) Cab45 is required for Ca(2+)-dependent secretory cargo sorting at the trans-Golgi network. J Cell Biol 199(7):1057–1066. doi:10.1083/jcb.201207180

    Google Scholar 

  • Waguri S, Dewitte F, Le Borgne R, Rouille Y, Uchiyama Y, Dubremetz JF, Hoflack B (2003) Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells. Mol Biol Cell 14(1):142–155. doi:10.1091/mbc.E02-06-0338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Zhuang X, Hillmer S, Robinson DG, Jiang L (2011) Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. Mol Plant 4:845–853

    CAS  PubMed  Google Scholar 

  • Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek SY, Pan J (2013a) Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell. doi:10.1105/tpc.112.108373

    Google Scholar 

  • Wang JG, Li S, Zhao XY, Zhou LZ, Huang GQ, Xie HT, Feng C, Zhang Y (2013b) HAPLESS13, the Arabidopsis mu1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome. Plant Physiol. doi:10.1104/pp.113.221051

    Google Scholar 

  • Watanabe E, Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2002) Calcium-mediated association of a putative vacuolar sorting receptor PV72 with a propeptide of 2S albumin. J Biol Chem 277(10):8708–8715

    CAS  PubMed  Google Scholar 

  • Watanabe E, Shimada T, Tamura K, Matsushima R, Koumoto Y, Nishimura M, Hara-Nishimura I (2004) An ER-localized form of PV72, a seed-specific vacuolar sorting receptor, interferes the transport of an NPIR-containing proteinase in Arabidopsis leaves. Plant Cell Physiol 45(1):9–17

    CAS  PubMed  Google Scholar 

  • Wilson DW, Lewis MJ, Pelham HR (1993) pH-dependent binding of KDEL to its receptor in vitro. J Biol Chem 268(10):7465–7468

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Shimada T, Takahashi H, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2008) Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. Plant Cell Physiol 49(2):142–156

    CAS  PubMed  Google Scholar 

  • Zelazny E, Santambrogio M, Pourcher M, Chambrier P, Berne-Dedieu A, Fobis-Loisy I, Miege C, Jaillais Y, Gaude T (2013) Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis. J Biol Chem 288(13):8815–8825. doi:10.1074/jbc.M112.440503

    CAS  PubMed  Google Scholar 

  • Zouhar J, Munoz A, Rojo E (2010) Functional specialization within the vacuolar sorting receptor family: VSR1, VSR3 and VSR4 sort vacuolar storage cargo in seeds and vegetative tissues. Plant J 64(4):577–588

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nadine Paris (Institut National de la Recherche Agronomique/Montpellier SupAgro/Universite´ Montpellier, France) and Karin Schumacher (Centre for Organismal Studies, University of Heidelberg, Germany) for allowing us to cite unpublished results. The financial support of the Deutsche Forschungsgemeinschaft (PI 769/1-2 and RO 440/11-4) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pimpl.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.G., Pimpl, P. Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. Protoplasma 251, 247–264 (2014). https://doi.org/10.1007/s00709-013-0542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0542-7

Keywords

Navigation