Skip to main content

Advertisement

Log in

The dynamic roles of intracellular lipid droplets: from archaea to mammals

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

LD:

Lipid droplet

MLDP:

Myocardial lipid droplet protein

PA:

Phosphatidic acid

PAT:

Perlipin, adipophilin and TIP47 (now termed Plin)

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

PHB/V:

Co-polymer of hydroxybutyrate and hydroxyvalerate

Plin:

Perilipin

PPAR:

Peroxisome proliferator-activated nuclear receptor

TAG:

Triacylglycerol

TIP47:

Tail-interacting 47-kDa protein (or Plin3)

WS:

Wax ester synthase

WS/DGAT:

Wax ester synthetase/diacylglycerol acyltransferase

References

  • Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM (1997) Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9:1481–1493

    PubMed  CAS  Google Scholar 

  • Abell BM, High S, Moloney MM (2002) Membrane protein topology of oleosin is constrained by its long hydrophobic domain. J Biol Chem 277:8602–8610

    Article  PubMed  CAS  Google Scholar 

  • Abell BM, Hahn M, Holbrook LA, Moloney MM (2004) Membrane topology and sequence requirements for oil body targeting of oleosin. Plant J 37:461–470

    Article  PubMed  CAS  Google Scholar 

  • Aboulaich N, Ortegren U, Vener AV, Stralfors P (2006) Association and insulin regulated translocation of hormone-sensitive lipase with ptrf. Biochem Biophys Res Commun 350:657–661

    Article  PubMed  CAS  Google Scholar 

  • Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68:1732–1740

    Article  PubMed  CAS  Google Scholar 

  • Adeyo O, Horn PJ, Lee SK, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055

    Article  PubMed  CAS  Google Scholar 

  • Agarwal AK, Garg A (2006) Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomic Hum Genet 7:175–199

    Article  CAS  Google Scholar 

  • Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–23

    Article  PubMed  CAS  Google Scholar 

  • Ahmadian M, Wang Y, Sul HS (2010) Lipolysis in adipocytes. Int J Biochem Cell Biol 42:555–559

    Article  PubMed  CAS  Google Scholar 

  • Alberts P, Rotin D (2010) Regulation of lipid droplet turnover by ubiquitin ligases. BMC Biol 8:94

    Article  PubMed  CAS  Google Scholar 

  • Almeida PE, Silva AR, Maya-Monteiro CM, Töröcsik D, D’Avila H, Dezsö B, Magalhaes KG, Castro-Faria-Neto HC, Nagy L, Bozza PT (2009) Mycobacterium bovis bacillus Calmette–Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor gamma expression and activation: functions in inflammation, lipid metabolism, and pathogenesis. J Immunol 183:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Altmann R (1890) Die Elementarorganisem und ihre Beziehungen zu den Zellen. Veit, Leipzig

    Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  PubMed  CAS  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transporter system: a bioinformatics approach. BMC Genomic 5:40

    Article  CAS  Google Scholar 

  • Andersson L, Bostrom P, Ericson J, Rutberg M, Magnusson B, Marchesan D, Ruiz M, Asp L, Huang P, Frohman MA, Borén J, Olofsson SO (2006) PLD1 and ERK2 regulate cytosolic lipid droplet formation. J Cell Sci 119:2246–2257

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Harmon AC, Sankara Rao K (2000) Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Harmon AC, Sankara Rao K (2003) Ca2+-dependent protein kinase in oil bodies: its biochemical characterization and significance. Plant Cell Physiol 44:367–376

    Article  PubMed  CAS  Google Scholar 

  • Arner P (2011) Lipases in cachexia. Science 333:163–164

    Article  PubMed  CAS  Google Scholar 

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181:6441–6448

    PubMed  CAS  Google Scholar 

  • Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 51:1975–1987

    Article  PubMed  CAS  Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signalling pathways in plants and animals conserved? Nature Immunol 6:973–979

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  PubMed  CAS  Google Scholar 

  • Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P, Chapman KD (2007a) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48:837–847

    Article  PubMed  CAS  Google Scholar 

  • Bartz R, Seemann J, Zehmer JK, Serrero G, Chapman KD, Anderson RG, Liu P (2007b) Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage. Mol Biol Cell 18:3015–3025

    Article  PubMed  CAS  Google Scholar 

  • Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P (2007c) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 6:3256–3265

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    Article  PubMed  CAS  Google Scholar 

  • Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947

    Article  PubMed  CAS  Google Scholar 

  • Beller M, Riedel D, Jansch L, Dieterich G, Wehland J, Jäckle H, Kühnlein RP (2006) Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5:1082–1094

    Article  PubMed  CAS  Google Scholar 

  • Beller M, Sztalryd C, Southall N, Bell M, Jäckle H, Auld DS, Oliver B (2008) COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:2530–2549

    Article  CAS  Google Scholar 

  • Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jäckle H, Kühnlein RP (2010a) PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–532

    Article  PubMed  CAS  Google Scholar 

  • Beller B, Thiel K, Thul PJ, Jäckle H (2010b) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:241–247

    Article  PubMed  CAS  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicauda JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  PubMed  CAS  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  PubMed  CAS  Google Scholar 

  • Bewersdorf J, Farese RV, Walther TC (2011) A new way to look at fat. Nat Meth 8:132–133

    Article  CAS  Google Scholar 

  • Bhatla SC, Kaushik V, Yadav MK (2010) Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv 28:293–300

    Article  PubMed  CAS  Google Scholar 

  • Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440

    PubMed  CAS  Google Scholar 

  • Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RGW, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731

    Article  PubMed  CAS  Google Scholar 

  • Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49:10747–10755

    Article  PubMed  CAS  Google Scholar 

  • Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791:467–473

    PubMed  CAS  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  CAS  Google Scholar 

  • Bonsegna S, Bettini S, Pagano R, Zacheo A, Vergaro V, Giovinazzo G, Caminati G, Leporatti S, Valli L, Santino A (2011) Plant oil bodies: novel carriers to deliver lipophilic molecules. Appl Biochem Biotechnol 163:792–802

    Article  PubMed  CAS  Google Scholar 

  • Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    Article  PubMed  CAS  Google Scholar 

  • Borowitz MJ, Blum JJ (1976) Triacylglycerol turnover in Tetrahymena pyriformis. Relation to phospholipid synthesis. Biochim Biophys Acta 424:114–124

    PubMed  CAS  Google Scholar 

  • Boström P, Rutberg M, Ericsson J, Holmdahl P, Andersson L, Frohman MA, Boren J, Olofsson SO (2005) Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler Thromb Vasc Biol 25:1945–1951

    Article  PubMed  CAS  Google Scholar 

  • Boström P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, Fernandez-Rodriguez J, Ericson J, Nilsson T, Borén J, Olofsson SO (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, Lavergne JP, Penin F, McLauclan J (2006) Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281:22236–22247

    Article  PubMed  CAS  Google Scholar 

  • Boulant S, Targett-Adams P, McLauchlan J (2007) Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 88:2204–2213

    Article  PubMed  CAS  Google Scholar 

  • Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J (2008) Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 9:1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Boutet E, El Mourabit H, Prot M, Nemani M, Khallouf E, Colard O, Maurice M, Durand-Schneider AM, Chrétien Y, Grès S, Wolf C, Saulnier-Blache JS, Capeau J, Magré J (2009) Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli–Seip congenital lipodystrophy. Biochimie 91:796–803

    Article  PubMed  CAS  Google Scholar 

  • Bozza PT, Viola JPB (2010) Lipid droplets in inflammation and cancer. Prostaglandin Leukot Essent Fatty Acids 82:243–250

    Article  CAS  Google Scholar 

  • Bozza PT, Yu W, Penrose JF, Morgan ES, Dvorak AM, Weller PF (1997) Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 186:909–920

    Article  PubMed  CAS  Google Scholar 

  • Bozza PT, Melo RC, Bandeira-Melo C (2007) Leukocyte lipid bodies regulation and function: contribution to allergy and host defense. Pharmacol Ther 113:30–49

    Article  PubMed  CAS  Google Scholar 

  • Bozza PT, D’Avila H, Almeida PE, Magalhães KG, Molinaro R, Almeida CA, Maya-Monteiro CM (2009a) Lipid droplets in host–pathogen interactions. Clin Lipidol 4:791–807

    Article  CAS  Google Scholar 

  • Bozza PT, Magalhães KG, Weller PF (2009b) Leukocyte lipid bodies—biogenesis and functions in inflammation. Biochim Biophys Acta 1791:540–551

    PubMed  CAS  Google Scholar 

  • Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. doi:10.1016/j.plefa.2011.04.020

  • Brasaemle DL (2007) The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    PubMed  CAS  Google Scholar 

  • Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842

    Article  PubMed  CAS  Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    Article  PubMed  CAS  Google Scholar 

  • Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402

    Article  PubMed  CAS  Google Scholar 

  • Buers I, Hofnagel O, Ruebel A, Severs NJ, Robenek H (2011) Lipid droplet associated proteins: an emerging role in atherogenesis. Histol Histopathol 26:631–642

    PubMed  Google Scholar 

  • Canoy D, Buchan I (2007) Challenges in obesity epidemiology. Obes Rev 8:1–11

    Article  PubMed  Google Scholar 

  • Castera L, Chouteau P, Hezode C, Zafrani ES, Dhumeaux D, Pawlotsky JM (2005) Hepatitis C virus-induced hepatocellular steatosis. Am J Gastroent 100:711–715

    Article  PubMed  Google Scholar 

  • Catesson AM (1964) Origine, fonctionnement, et variation cytologiques saisonnières du cambium. Ann Sci Nat 5:368–375

    Google Scholar 

  • Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19

    Article  PubMed  CAS  Google Scholar 

  • Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795

    Article  PubMed  CAS  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2 ⁄ EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    Article  PubMed  CAS  Google Scholar 

  • Cernac A, Andre C, Hoffmann-Benning S, Benning C (2006) WRI1 is required for seed germination and seedling establishment. Plant Physiol 141:745–757

    Article  PubMed  CAS  Google Scholar 

  • Chang BH, Chan L (2007) Emerging role of lipid droplet protein ADFP in health and disease. Am J Physiol Gastrointest Liver Physiol 292:1465–1468

    Article  CAS  Google Scholar 

  • Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM (2003) PPAR∂ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273

    Article  PubMed  CAS  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Klein A, Xiang M, Backhaus RA, Kuntz M (1998) Drought and wound induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J 14:317–326

    Article  Google Scholar 

  • Chen JC, Tsai CC, Tzen JT (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 40:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Yechoor VK, Chang BH, Li MV, March KL, Chan L (2009) The human lipodystrophy gene product Berardinelli–Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. Endocrinology 150:4552–4561

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Fujita A, Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T (2009) Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem Cell Biol 132:281–291

    Article  PubMed  CAS  Google Scholar 

  • Cho SY, Shin ES, Park PJ, Shin DW, Chang HK, Kim D, Lee HH, Lee JH, Kim SH, Song MJ, Chang IS, Lee OS, Lee TR (2007) Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem 282:2456–2465

    Article  PubMed  CAS  Google Scholar 

  • Chong BM, Reigan P, Mayle-Combs KD, Orlicky DJ, McManaman JL (2011a) Determinants of adipophilin function in milk lipid formation and secretion. Trend Endocrinol Metab 22:211–217

    Article  CAS  Google Scholar 

  • Chong BM, Russell TD, Schaack J, Orlicky DJ, Reigan P, Ladinsky M, McManaman JL (2011b) The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. J Biol Chem 286:23254–23265

    Article  PubMed  CAS  Google Scholar 

  • Christianson JL, Boutet E, Puri V, Chawla A, Czech MP (2010) Identification of the lipid droplet targeting domain of the Cidea protein. J Lipid Res 51:3455–3462

    Article  PubMed  CAS  Google Scholar 

  • Chung KM, Cha SS, Jang SK (2008) A novel function of karyopherin beta3 associated with apolipoprotein A-I secretion. Mol Cells 26:291–298

    PubMed  CAS  Google Scholar 

  • Cobbe N, Marshall KM, Rao SG, Chang CW, Di Cara F, Duca E, Vass S, Kassan A, Heck MMS (2009) The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J Cell Sci 122:3414–3423

    Article  PubMed  CAS  Google Scholar 

  • Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J 63:526–540

    Article  CAS  Google Scholar 

  • Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH (2008) Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105:9379–9384

    Article  PubMed  CAS  Google Scholar 

  • Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein σ-synuclein. J Biol Chem 277:6344–6352

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA, Lewin TM, Muoio DM (2000) Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20:77–103

    Article  PubMed  CAS  Google Scholar 

  • Connerth M, Tibor Czabany T, Wagner A, Zellnig G, Leitner E, Steyrer E, Daum G (2010) Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285:26832–26841

    Article  PubMed  CAS  Google Scholar 

  • Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109:198–201

    Article  PubMed  CAS  Google Scholar 

  • Coppens I (2005) Contribution of host lipids to Toxoplasma pathogenesis. Cell Microbiol 8:1–9

    Article  CAS  Google Scholar 

  • Coppens I, Vielemeyer O (2005) Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. J Parasitol 35:597–615

    CAS  Google Scholar 

  • Cordova-Tellez L, Burris JS (2002) Alignment of lipid bodies along the plasma membrane during the acquisition of desiccation tolerance in maize seed. Crop Sci 42:1982–1988

    Article  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  PubMed  CAS  Google Scholar 

  • Cragg FJ, Willison JHM (1980) The ultrastructure of quiescent buds of Tilia europaea. Can J Bot 58:1804–1813

    Article  Google Scholar 

  • Crane J, Miller A, Van Roekel JW, Walters C (2003) Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217:699–708

    Article  PubMed  CAS  Google Scholar 

  • Crane J, Kovach D, Gardner C, Walters C (2006) Triacylglycerol phase and ‘intermediate’ seed storage physiology: a study of Cuphea carthagenensis. Planta 223:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Cypess AM, Kahn CR (2010) The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr 22:478–484

    Article  PubMed  Google Scholar 

  • Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283:17065–17074

    Article  PubMed  CAS  Google Scholar 

  • D’Avila H, Melo RC, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT (2006) Mycobacterium bovis bacillus Calmette–Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176:3087–3097

    PubMed  Google Scholar 

  • D’Avila H, Almeida PE, Roque NR, Castro-Faria-Neto HC, Bozza PT (2007) Toll-like receptor-2-mediated C-C chemokine receptor 3 and eotaxin-driven eosinophil influx induced by Mycobacterium bovis BCG pleurisy. Infect Immun 75:1507–1511

    Article  PubMed  CAS  Google Scholar 

  • D’Avila H, Maya-Monteiro CM, Bozza PT (2008) Lipid bodies in innate immune response to bacterial and parasite infections. Int Immunopharmacol 8:1308–1315

    Article  PubMed  CAS  Google Scholar 

  • Dalen KT, Dahl T, Holter E, Arntsen B, Londos C, Sztalryd C, Nebb HI (2007) LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim Biophys Acta 1771:210–212

    PubMed  CAS  Google Scholar 

  • Dalton DA, Ma C, Shrestha S, Kitin P, Strauss SH (2011) Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar. Plant Biotechnol J 9:759–767

    Article  PubMed  CAS  Google Scholar 

  • Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848

    Article  PubMed  CAS  Google Scholar 

  • Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy P (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, Zimmermann R, Vesely P, Haemmerle G, Zechner R, Hoefler G (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333:233–238

    Article  PubMed  CAS  Google Scholar 

  • de Kroon AI (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 1771:343–352

    PubMed  Google Scholar 

  • de Lima CS, Marques MA, Debrie AS, Almeida EC, Silva CA, Brennan PJ, Sarno EN, Menozzi FD, Pessolani MC (2009) Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. FEMS Microbiol Lett 292:162–169

    Article  PubMed  CAS  Google Scholar 

  • Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE (2009) A novel in vitro multiple- stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4:e6077

    Article  PubMed  CAS  Google Scholar 

  • Débarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2005) Imaging the distribution and transport dynamics of lipid bodies in unstained cells and tissues using third-harmonic generation microscopy. Nat Method 3:47–53

    Article  CAS  Google Scholar 

  • Debelyy MO, Thoms S, Connerth M, Daum G, Erdmann R (2011) Involvement of the yeast hydrolase Ldh1p in lipid homeostasis. Eukaryot Cell 10:776–781

    Article  PubMed  CAS  Google Scholar 

  • Deisenroth C, Itahana Y, Tollini L, Jin A, Zhang Y (2011) p53 inducible Dhrs3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J Biol Chem 286:28343–28356

    Article  PubMed  CAS  Google Scholar 

  • Delikatny EJ, Chawla S, Leung DJ, Poptani H (2011) MR-visible lipids and the tumor microenvironment. NMR Biomed 24:592–611

    PubMed  CAS  Google Scholar 

  • Deruere J, Romer S, D'Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid over accumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133

    PubMed  CAS  Google Scholar 

  • Dias JML, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MGE, Ramos AM, Oliveira R, Reis MAM (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906

    Article  PubMed  CAS  Google Scholar 

  • DiDonato D, Brasaemle DL (2003) Fixation methods for the study of lipid droplets by immunofluorescence microscopy. J Histchem Cytochem 51:773–780

    Article  CAS  Google Scholar 

  • Digel M, Ehehalt R, Füllekrug J (2010) Lipid droplets lighting up: insights from live microscopy. FEBS Lett 584:2168–2175

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trend Endocrinol Metab 22:234–240

    Article  CAS  Google Scholar 

  • Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 1–37

    Chapter  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinol 149:942–949

    Article  CAS  Google Scholar 

  • Dvorak AM, Morgan ES, Tzizik DM, Weller PF (1994) Prostaglandin endoperoxide synthase (cyclooxygenase): ultrastructural localization to nonmembrane-bound cytoplasmic lipid bodies in human eosinophils and 3T3 fibroblasts. Int Arch Allergy Immunol 105:245–250

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Quettier AL, Kroon JTM, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811

    Article  PubMed  CAS  Google Scholar 

  • Edvardsson U, Ljungberg A, Linden D, William-Olsson L, Peilot-Sjogren H, Ahnmark A, Oscarsson J (2006) PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes. J Lipid Res 47:329–340

    Article  PubMed  CAS  Google Scholar 

  • Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliana huxleyi. J Phycol 41:1000–1009

    Article  CAS  Google Scholar 

  • Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860

    Article  PubMed  CAS  Google Scholar 

  • Farrar JJ, Evert RF (1997) Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. Trees 11:191–202

    Google Scholar 

  • Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482

    Article  PubMed  CAS  Google Scholar 

  • Fei W, Du X, Yang H (2011a) Seipin, adipogenesis and lipid droplets. Trend Endocrinol Metab 22:204–210

    Article  CAS  Google Scholar 

  • Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P, Huang X, Parton RG, Wenk MR, Walther TC, Yang H (2011b) A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7:e1002201

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Ren M, Chen L, Rubin CS (2007) Properties, regulation and in vivo functions of a novel protein kinase D: C. elegans DKF-2 links diacylglycerol second messenger to the regulation of stress responses and lifespan. J Biol Chem 282:31273–31288

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Jensen WA, Ashton ME (1968) Histochemical studies of pollen: storage pockets in the endoplasmic reticulum (ER). Histochem 13:169–182

    CAS  Google Scholar 

  • Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M (2010) A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9:1702–1710

    Article  PubMed  CAS  Google Scholar 

  • Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  PubMed  CAS  Google Scholar 

  • French SW (1989) Biochemical basis for alcohol-induced liver injury. Clin Biochem 22:41–49

    Article  PubMed  CAS  Google Scholar 

  • Froissard M, D’andréa S, Boulard C, Chardot T (2009) Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 9:428–438

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Ohsaki Y (2006) Cytoplasmic lipid droplets: rediscovery of an old structure as a unique platform. Ann NY Acad Sci 1086:104–115

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Parton RG (2010) Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3:a004838

    Article  CAS  Google Scholar 

  • Fujimoto T, Kogo H, Nomura R, Une T (2000) Isoforms of caveolin 1 and caveolar structure. J Cell Sci 113:3509–3517

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Mori M, Higashi Y, Kojima S, Takano T (2004) Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644:47–59

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Kichise T, Iwata T, Doi Y (2001) Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromol 2:148–153

    Article  CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M.acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Gandotra S, Le Dour C, Bottomley W, Cervera P, Giral P, Reznik Y, Charpentier G, Auclair M, Delépine M, Barroso I, Semple RK, Lathrop M, Lascols O, Capeau J, O'Rahilly S, Magré J, Savage DB, Vigouroux C (2011) Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364:740–748

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Agarwal AK (2009) Lipodystrophies: disorders of adipose tissue biology. Biochim Biophys Acta 1791:507–513

    PubMed  CAS  Google Scholar 

  • Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiol 148:2951–2958

    CAS  Google Scholar 

  • Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75

    Article  PubMed  CAS  Google Scholar 

  • Gaspar I, Szabad J (2009) In vivo analysis of MT-based vesicle transport by confocal reflection microscopy. Cell Motil Cytoskelet 66:68–79

    Article  CAS  Google Scholar 

  • Gidda SK, Shockey JM, Falcone M, Kim PK, Rothstein SJ, Andrews DW, Dyer JM, Mullen RT (2011) Hydrophobic-domain-dependent protein–protein interactions mediate the localization of GPAT enzymes to ER subdomains. Traffic 12:452–472

    Article  PubMed  CAS  Google Scholar 

  • Gillet B, Beyly A, Peltier G, Rey P (1998) Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP 34 expression by ABA and high illumination. Plant J 16:257–262

    Article  PubMed  CAS  Google Scholar 

  • Girousse A, Langin D (2011) Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obesity. doi:10.1038/ijo.2011.113

  • Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    Article  PubMed  CAS  Google Scholar 

  • Gohon Y, Vindigni JD, Pallier A, Wien F, Celia H, Giuliani A, Tribet C, Chardot T, Briozzo P (2011) High water solubility and fold in amphipols of proteins with large hydrophobic regions: oleosins and caleosin from seed lipid bodies. Biochim Biophys Acta 1808:706–716

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AA, Bourque SD, Kyryakov P, Boukh-Viner T, Gregg C, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Titorenko VI (2009) A novel function of lipid droplets in regulating longevity. Biochem Soc Trans 37:1050–1055

    Article  PubMed  CAS  Google Scholar 

  • Gomis-Rüth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24:157–202

    Article  PubMed  Google Scholar 

  • Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283:28005–28009

    Article  PubMed  CAS  Google Scholar 

  • Goodman JM (2009) Demonstrated and inferred metabolism associated with cytosolic lipid droplets. J Lipid Res 50:2148–2156

    Article  PubMed  CAS  Google Scholar 

  • Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Nagai H, Egawa K, Kim YI, Kato S, Taimatsu A, Sakamoto T, Ebisu S, Hohsaka T, Miyagawa H, Murakami S, Takahashi N, Kawada T (2011) Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist. Biochem J 483:111–119

    Article  CAS  Google Scholar 

  • Gouda MK (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  • Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BHA (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromol 10:660–669

    Article  CAS  Google Scholar 

  • Granneman JG, Moore HP (2008) Location, location: protein trafficking and lipolysis in adipocytes. Trend Endocrinol Metab 19:3–9

    Article  CAS  Google Scholar 

  • Greenberg AS, Coleman RA (2011) Expanding roles for lipid droplets. Trend Endocrinol Metab 22:195–196

    Article  CAS  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Investig 121:2102–2110

    Article  PubMed  CAS  Google Scholar 

  • Grefen C, Städele K, Ruzicka KL, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  PubMed  CAS  Google Scholar 

  • Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–606

    Article  PubMed  Google Scholar 

  • Grönke S, Mildner A, Fellert S, Tennagels N, Petry S, Müller G, Jäckle H, Kühnlein RP (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–330

    Article  PubMed  CAS  Google Scholar 

  • Grönke S, Müller G, Hirsch J, Fellert S, Andreou A, Haase T, Jäckle H, Kühnlein RP (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5:e137

    Article  PubMed  CAS  Google Scholar 

  • Gropler MC, Harris TE, Hall AM, Wolins NE, Gross RW, Han X, Chen Z, Finck BN (2009) Lipin 2 is a liver-enriched phosphatidate phosphohydrolase enzyme that is dynamically regulated by fasting and obesity in mice. J Biol Chem 284:6763–67720

    Article  PubMed  CAS  Google Scholar 

  • Gross SP, Welte MA, Block SM, Wieschaus EF (2000) Dynein-mediated cargo transport in vivo: a switch controls travel distance. J Cell Biol 148:945–956

    Article  PubMed  CAS  Google Scholar 

  • Guenther JC, Hallen-Adams HE, Bücking H, Shachar-Hill Y, Trail F (2009) Triacylglyceride metabolism by Fusarium graminearum during colonization and sexual development on wheat. Mol Plant Path Inter 22:1492–1503

    CAS  Google Scholar 

  • Guilloteau M, Laloi M, Blais D, Crouzillat D, Mc Carthy J (2003) Oil bodies in Theobroma cacao seeds: cloning and characterization of cDNA encoding the 15.8 and 16.9 kDa oleosins. Plant Sci 164:597–606

    Article  CAS  Google Scholar 

  • Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Cordes KR, Farese RV, Walther TC (2009) Lipid droplets at a glance. J Cell Sci 122:749–752

    Article  PubMed  CAS  Google Scholar 

  • Gurusamy C, Davis PJ, Bal AK (2000) Seasonal changes in perennial nodules of beach pea (Lathyrus maratimus [L] Bigel.) with special reference to oleosomes. Int J Plant Sci 161:631–638

    Article  CAS  Google Scholar 

  • Gutzeit HO (1986) The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J Cell Sci 80:159–169

    PubMed  CAS  Google Scholar 

  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    Article  PubMed  CAS  Google Scholar 

  • Han GS, Wu WI, Carman GM (2006) The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281:9210–9218

    Article  PubMed  CAS  Google Scholar 

  • Han GS, Siniossoglou S, Carman GM (2007a) The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem 282:37026–37035

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007b) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lu Q, Zhou L, Liu H, Xiang H (2009) Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii. Appl Environ Microbiol 75:6168–6175

    Article  PubMed  CAS  Google Scholar 

  • Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010a) Wide distribution among halophilic Archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819

    Article  PubMed  CAS  Google Scholar 

  • Han J, Li M, Hou J, Wu L, Zhou J, Xiang H (2010b) Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosyntheses in Haloarcula hispanica. Saline Syst 6:9

    Article  PubMed  CAS  Google Scholar 

  • Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151

    Article  PubMed  CAS  Google Scholar 

  • Hänisch J, Wältermann M, Robenek H, Steinbüchel A (2006) The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiol 152:3271–3280

    Article  CAS  Google Scholar 

  • Hanley SZ, Pappin DJ, Rahman D, White AJ, Elborough KM, Slabas AR (1999) Re-evaluation of the primary structure of Ralstonia eutropha phasin and implications for polyhydroxyalkanoic acid granule binding. FEBS Lett 447:99–105

    Article  PubMed  CAS  Google Scholar 

  • Hanstein J (1880) Ueber die Gestaltungsvorgange in den Zellkerne bei der Theilung der Zellen. Botan Abhandl Morphol Physiol Bonn 4:2

    Google Scholar 

  • Hapala I, Marza E, Ferreira T (2011) Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell 103:271–285

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    PubMed  CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  PubMed  CAS  Google Scholar 

  • Harris TE, Finck BN (2011) Dual function lipin proteins and glycerolipid metabolism. Trend Endocrinol Metab 22:226–233

    Article  CAS  Google Scholar 

  • Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, Han X, Brownell N, Gross RW, Zechner R, Farese RV (2011) DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res 52:657–667

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Su TP (2003) Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306:718–725

    Article  PubMed  CAS  Google Scholar 

  • Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, Park YE, Nonaka I, Hino-Fukuyo N, Haginoya K, Sugano H, Nishino I (2009) Human ptrf mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 119:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • He YQ, Wu Y (2009) Oil body biogenesis during Brassica napus embryogenesis. J Integr Plant Biol 51:792–799

    Article  PubMed  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703

    PubMed  CAS  Google Scholar 

  • Heneen WK, Karlsson G, Brismar K, Gummeson PO, Marttila S, Leonova S, Carlsson AS, Bafor M, Banas A, Mattsson B, Debski H, Stymne S (2008) Fusion of oil bodies in endosperm of oat grains. Planta 228:589–599

    Article  PubMed  CAS  Google Scholar 

  • Hensel W (1986) Cytodifferentiation of polar plant cells. Planta 169:293–303

    Article  PubMed  CAS  Google Scholar 

  • Herker E, Ott M (2011) Unique ties between hepatitis C virus replication and intracellular lipids. Trend Endocrinol Metab 22:241–248

    Article  CAS  Google Scholar 

  • Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, Farese RV Jr, Ott M (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Meth 16:1295–1298

    Article  CAS  Google Scholar 

  • Herman E (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11:672–679

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Pinzón I, Ross JHE, Barnes KA, Damant AP, Murphy DJ (1999) Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta 208:588–598

    Article  PubMed  Google Scholar 

  • Hernández-Pinzón I, Patel K, Murphy DJ (2001) The novel calcium-binding protein, caleosin, has distinct endoplasmic reticulum and lipid-body associated isoforms. Plant Physiol Biochem 39:1–9

    Article  Google Scholar 

  • Hezayen FF, Gutierrez CM, Steinbüchel A, Tindall BJ, Rehm BH (2009) Halopiger aswanensis sp. nov., a polymer-producing, extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 60:633–637

    Article  PubMed  CAS  Google Scholar 

  • Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH (2004) Structure of a lipid droplet protein: the PAT family member TIP47. Structure 12:1199–1207

    PubMed  CAS  Google Scholar 

  • Hinson ER, Cresswell P (2009) The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α -helix. Proc Natl Acad Sci USA 106:20452–20457

    Article  PubMed  CAS  Google Scholar 

  • Hodges BDM, Wu CC (2010) Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J Lipid Res 51:262–273

    Article  PubMed  CAS  Google Scholar 

  • Hommel A, Hesse D, Volker W, Jaschke A, Moser M, Engel T, Blüher M, Zahn C, Chadt A, Ruschke K, Vogel H, Kluge R, Robenek H, Joost HJ, Schürmann A (2010) The ARF-like GTPase ARFRP1 is essential for lipid droplet growth and is involved in the regulation of lipolysis. Mol Cell Biol 30:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC (2010) Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72

    Article  PubMed  CAS  Google Scholar 

  • Hörl G, Wagner A, Cole LK, Malli R, Reicher H, Kotzbeck P, Köfeler H, Höfler G, Frank S, Bogner-Strauss JG, Sattler W, Vance DE, Steyrer E (2011) Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 285:17338–17350

    Article  CAS  Google Scholar 

  • Horn PJ, Ledbetter NR, James CN, Hoffman WD, Case CR, Verbeck GF, Chapman KD (2011) Visualization of lipid droplet composition by direct organelle mass spectrometry. J Biol Chem 286:3298–3306

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 67:491–498

    Article  PubMed  CAS  Google Scholar 

  • Hsiao ESL, Tzen JTC (2011) Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination. Plant Physiol Biochem 49:77–81

    Article  PubMed  CAS  Google Scholar 

  • Hsieh K, Huang A (2005) Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant J 43:889–899

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Chung CI, Lin YC, Hsing YC, Huang AHC (2009) Oil bodies and oleosins in Physcomitrella possess characteristics representative of early trends in evolution. Plant Physiol 150:1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Itabe H (2010) Intracellular lipid droplet-associated proteins: unique members and their biological functions. Foreword. Biol Pharm Bull 33:341–341

    Article  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  PubMed  CAS  Google Scholar 

  • Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–2437

    Article  PubMed  CAS  Google Scholar 

  • Jägerström S, Polesie S, Wickström Y, Johansson BR, Schröder HD, Hojlund K, Boström P (2009) Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int 33:934–940

    Article  PubMed  CAS  Google Scholar 

  • James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RG, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci USA 107:17833–17838

    Article  PubMed  CAS  Google Scholar 

  • Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ (2011) Major players on the microbial stage: why archaea are important. Microbiol 157:919–936

    Article  CAS  Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    Article  PubMed  CAS  Google Scholar 

  • Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA, Fisher DB, Ashton ME (1968) Cotton embryogenesis: the pollen cytoplasm. Planta 81:206–228

    Article  Google Scholar 

  • Jordy MN (2004) Seasonal variation of organogenetic activity and reserves allocation in the shoot apex of Pinus pinaster Ait. Ann Bot 93:25–37

    Article  PubMed  Google Scholar 

  • Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL, Severina N, Torregroza I, Evans T, Silver DL (2008) Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105:94–99

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA, Cherfils J, Elias M, Lovering RC, Munro S, Schümann A (2006) Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol 172:645–650

    Article  PubMed  CAS  Google Scholar 

  • Kalantari F, Bergeron JJ, Nilsson T (2010) Biogenesis of lipid droplets—how cells get fatter. Mol Memb Biol 27:462–468

    Article  CAS  Google Scholar 

  • Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R (2010) Genetics of wax ester and triacylglycerol biosynthesis in bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in 653 Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007a) Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2007b) Microdiesel: Escherichia coli engineered for fuel production. Microbiol 152:2529–2536

    Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular Cyanobacterium sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmuller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, de Oliviera Manes CL, van Montagu M, Gheysen G (2002) Activation of a pollenin promoter upon nematode infection. J Nemat 34:75–79

    CAS  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo WK, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147

    Article  PubMed  CAS  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 16:4586–4598

    Article  CAS  Google Scholar 

  • Katz A, Jimenez C, Pick U (1995) Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiol 108:1657–1664

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Luker MA, Palmer JD (2000) Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17:23–31

    Article  PubMed  CAS  Google Scholar 

  • Keenan TW, Mather IH (2006) Intracellular origin of milk fat globules and the nature of the milk fat globule membrane. In: Fox PF, McSweeney PLH (eds) Advanced Dairy Chemistry, vol 2, lipids. Springer, New York, pp 137–171

    Google Scholar 

  • Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113

    Article  PubMed  CAS  Google Scholar 

  • Khandelia H, Duelund L, Pakkanen KI, Ipsen JH (2010) Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One 5:e12811

    Article  PubMed  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91e100

    Article  CAS  Google Scholar 

  • Kim S, Dale B (2005) Life cycle assessment study of biopolymers (polyhydroxyalkanoates)-derived from no-tilled corn. Int J Life Cycle Anal 10:200–210

    Article  CAS  Google Scholar 

  • Kim HU, Wu SSH, Ratnayake C, Huang AHC (2001) Brassica rapa has three genes that encode proteins associated with different neutral lipids in plastids of specific tissues. Plant Physiol 126:330–341

    Article  PubMed  CAS  Google Scholar 

  • Kim HU, Hsei K, Ratnayake C, Huang AHC (2002) A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem 277:22677–22684

    Article  PubMed  CAS  Google Scholar 

  • Kim YY, Jung KW, Yoo KS, Jeung JU, Shin JS (2011) A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Plant Cell Physiol 52:874–884

    Article  PubMed  CAS  Google Scholar 

  • Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T (2003) Purification and properties of an intracellular 3-hydroxybutyrate oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 185:3485–3490

    Article  PubMed  CAS  Google Scholar 

  • Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G (2007) Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7:218–226

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2003) Horizontal gene transfer: the path to maturity. Mol Microbiol 50:725–727

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology 11:209

    Article  PubMed  CAS  Google Scholar 

  • Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61

    Article  PubMed  CAS  Google Scholar 

  • Krahmer N, Guo Y, Farese RV, Walther TC (2009) SnapShot: lipid droplets. Cell 139:1024–1024

    Article  PubMed  Google Scholar 

  • Krasowski MJ, Owens JN (1990) Seasonal changes in the apical zonation and ultrastructure of coastal Douglas fir seedlings (Pseudotsuga menziesii). Am J Bot 77:245–260

    Article  Google Scholar 

  • Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352

    Article  PubMed  CAS  Google Scholar 

  • Kühnlein RP (2011) The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 50:348–356

    Article  PubMed  CAS  Google Scholar 

  • Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491–500

    Article  PubMed  CAS  Google Scholar 

  • Kurat C, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein S (2009) Cdk1/cdc28-dependent activation of the major triacylglycerol lipase tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53–63

    Article  PubMed  CAS  Google Scholar 

  • Laizet Y, Pontier D, Mache R, Kuntz M (2004) Subfamily organization and phylogenetic origin of genes encoding plastid lipid-associated proteins of the fibrillin type. J Genome Sci Tech 3:19–28

    Article  CAS  Google Scholar 

  • Langenkamper G, Manac'h N, Broin M, Cuiné S, Becuwe N, Kuntz M, Rey P (2001) Accumulation of plastid lipid- associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J Exp Bot 52:1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Larigauderie G, Furman C, Jaye M, Lasselin C, Copin C, Fruchart JC, Castro G, Rouis M (2004) Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler Thromb Vasc Biol 24:504–510

    Article  PubMed  CAS  Google Scholar 

  • Le Lay S, Dugail I (2009) Connecting lipid droplet biology and the metabolic syndrome. Prog Lipid Res 48:191–195

    Article  PubMed  CAS  Google Scholar 

  • Le Lay S, Hajduch E, Lindsay MR, Le Liepvre X, Thiele C, Ferre P, Parton RG, Kurzchalia T, Simons K, Dugail I (2006) Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7:549–561

    Article  PubMed  CAS  Google Scholar 

  • Le Lay S, Blouin CM, Hajduch E, Dugail I (2009) Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim Biophys Acta 1791:514–518

    PubMed  Google Scholar 

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Corradi N, Byrnes EJ 3rd, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18:1675–1679

    Article  PubMed  CAS  Google Scholar 

  • Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Leprince O, van Aelst AC, Pritchard HW, Murphy DJ (1998) Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds. Planta 204:109–119

    Article  CAS  Google Scholar 

  • Lersten NR, Czlapinski AR, Curtis JD, Freckmann R, Horner HT (2006) Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey. Am J Bot 93:1731–1739

    Article  PubMed  Google Scholar 

  • Leubner-Metzger G, Meins F (2000) Sense transformation reveals a novel role for class I ß-1,3-glucanase in tobacco seed germination. Plant J 23:215–221

    Article  PubMed  CAS  Google Scholar 

  • Li M, Murphy DJ, Lee KH, Wilson R, Smith LJ, Clark DC, Sung JY (2002) Purification and structural characterization of the central hydrophobic domain of oleosin. J Biol Chem 277:37888–37895

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Lillo JG, Rodriguez-Valera F (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    PubMed  Google Scholar 

  • Litvak V, Shaul YD, Shulewitz M, Amarilio R, Carmon S, Lev S (2002) Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain. Curr Biol 12:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Liu CP, Lin LP (2001) Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Bot Bull Acad Sin 42:207–214

    CAS  Google Scholar 

  • Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–3792

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Hedley P, Cardle L, Wright KM, Hein I, Marshall D, Waugh R (2005) Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development. Planta 221:513–522

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Bartz R, Zehmer J, Ying Y, Zhu M, Serrero G, Anderson R (2007) Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773:784–793

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF (2008) Deletion of cavin/ptrf causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8:310–317

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48:9–15

    Article  PubMed  CAS  Google Scholar 

  • Lockshon D, Surface LE, Kerr EO, Kaeberlein M, Kennedy BK (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175:77–91

    Article  PubMed  CAS  Google Scholar 

  • Lohmann A, Schöttler MA, Bréhélin C, Kessler F, Bock R, Cahoon EB, Dörmann P (2006) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem 281:40461–40472

    Article  PubMed  CAS  Google Scholar 

  • Lösel DM, Sancholle M (1996) Fungal lipids. In: Prasad R, Ghannoum MA (eds) Lipids of pathogenic fungi. CRC, Boca Raton, pp 27–62

    Google Scholar 

  • Lu Q, Han J, Zhou L, Zhou J, Xiang H (2008) Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei. J Bacteriol 190:4173–4180

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Fadeev EA, Groves J (2005) Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol 1:149–153

    Article  PubMed  CAS  Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001a) Biosynthesis of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001b) Biosynthesis of poly(3hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • MacEachran DP, Prophete ME, Sinskey AJ (2010) The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. App Env Microbiol 76:7217–7225

    Article  CAS  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  PubMed  CAS  Google Scholar 

  • Magra AL, Mertz PS, Torday JS, Londos C (2006) Role of adipose differentiation-related protein in lung surfactant production: a reassessment. J Lipid Res 47:2367–2373

    Article  PubMed  CAS  Google Scholar 

  • Magré J, Delepine M, Khallouf E, Gedde-Dahl T Jr, Van Maldergem L, Sobel E, Papp J, Meier M, Megarbane A, Bachy A, Verloes A, d’Abronzo FH, Seemanova E, Assan R, Baudic N, Bourut C, Czernichow P, Huet F, Grigorescu F, de Kerdanet M, Lacombe D, Labrune P, Lanza M, Loret H, Matsuda F, Navarro J, Nivelon-Chevalier A, Polak M, Robert JJ, Tric P, Tubiana-Rufi N, Vigouroux C, Weissenbach J, Savasta S, Maassen JA, Trygstad O, Bogalho P, Freitas P, Medina JL, Bonnicci F, JoVe BI, Loyson G, Panz VR, Raal FJ, O’Rahilly S, Stephenson T, Kahn CR, Lathrop M, Capeau J (2001) Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370

    Article  PubMed  Google Scholar 

  • Manac’h N, Kuntz M (1999) Stress induction of a nuclear gene encoding for a plastid protein is mediated by photo-oxidative events. Plant Physiol Biochem 37:859–868

    Article  PubMed  Google Scholar 

  • Manilla-Pérez E, Lange AB, Hetzler S, Wältermann M, Kalscheuer R, Steinbüchel A (2010) Isolation and characterization of a mutant of the marine bacterium Alcanivorax borkumensis SK2 defective in lipid biosynthesis. Appl Env Microbiol 76:2884–2894

    Article  CAS  Google Scholar 

  • Markley N, Nykiforuk CL, Boothe JG, Moloney MM (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int 19:34–57

    CAS  Google Scholar 

  • Martin S, Parton RG (2005) Caveolin, cholesterol, and lipid bodies. Sem Cell Devel Biol 16:163–174

    Article  CAS  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Canovas MJ, Quesada E, Llamas I, Bejar V (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737

    Article  PubMed  CAS  Google Scholar 

  • Mattos KA, D'Avila H, Rodrigues LS, Oliveira VG, Sarno EN, Atella GC, Pereira GM, Bozza PT, Pessolani MC (2010) Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol 87:371–384

    Article  PubMed  CAS  Google Scholar 

  • Mattos KA, Lara FA, Oliveira VGC, Rodrigues LS, D’Avila H, Melo RCN, Manso PPA, Sarno EN, Bozza PT, Pessolani MCV (2011) Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 13:259–273

    Article  PubMed  CAS  Google Scholar 

  • Mayfield JA, Preuss D (2000) Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nat Cell Biol 2:128–130

    Article  PubMed  CAS  Google Scholar 

  • McHugh B, Krause SA, Yu B, Deans AM, Heasman S, McLaughlin P, Heck MM (2004) Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. J Cell Biol 167:673–686

    Article  PubMed  CAS  Google Scholar 

  • Meex RC, Schrauwen P, Hesselink MK (2009) Modulation of myocellular fat stores: lipid droplet dynamics in health and disease. Am J Physiol Regul Integr Comp Physiol 297:913–924

    Article  CAS  Google Scholar 

  • Melo RC, D’Avila H, Fabrino DL, Almeida PE, Bozza PT (2003) Macrophage lipid body induction by Chagas disease in vivo: putative intracellular domains for eicosanoid formation during infection. Tissue Cell 35:59–67

    Article  PubMed  CAS  Google Scholar 

  • Melo RCN, D'Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59:540–556

    Article  PubMed  CAS  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  PubMed  CAS  Google Scholar 

  • Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, Hesselink MKC (2009) Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4077–4085

    Article  PubMed  CAS  Google Scholar 

  • Mishra R, Eminacipator SN, Miller C, Kern T, Simonson MS (2004) Adipose differentiation related protein and regulators of lipid homeostasis identified by gene expression profiling in murine db/db diabetic kidney. Am J Physiol Renal Physiol 286:913–921

    Article  Google Scholar 

  • Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257

    Article  PubMed  CAS  Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Mlícková K, Luo Y, D’Andrea S, Pec P, Chardot T, Nicaud J (2004a) Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B: Enzym 28:81–85

    Article  CAS  Google Scholar 

  • Mlícková K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud JM (2004b) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924

    Article  PubMed  CAS  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    Article  PubMed  CAS  Google Scholar 

  • Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C (2011) Human lysophosphatidylcholine acyltransferase 1 and 2 are located to lipid droplets, where they catalyze the formation of phosphatidylcholine. J Biol Chem 286:21330–21339

    Article  PubMed  CAS  Google Scholar 

  • Monte E, Ludevid D, Prat S (1999) Leaf C40.4: a carotenoid-associated protein involved in the modulation of photosynthetic efficiency? Plant J 19:399–410

    Article  PubMed  CAS  Google Scholar 

  • Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418:219–232

    Article  PubMed  CAS  Google Scholar 

  • Moro C, Bajpeyi S, Smith SR (2008) Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 294:E203–E213

    Article  PubMed  CAS  Google Scholar 

  • Mosammaparast N, Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14:547–556

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Maxfield FR (2004) Membrane domains. Ann Rev Cell Dev Biol 20:839–866

    Article  CAS  Google Scholar 

  • Müller M, Schins JM (2002) Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J Phys Chem B 106:3715–3723

    Article  CAS  Google Scholar 

  • Murphy DJ (1982) The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Lett 150:19–26

    Article  CAS  Google Scholar 

  • Murphy DJ (2001) Biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (2005) Lipid-associated proteins. In: Murphy DJ (ed) Plant Lipids: biology, utilisation and manipulation. Blackwell, Oxford

    Google Scholar 

  • Murphy DJ (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228:31–39

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (2008) Future prospects for biofuels. Chem Today 26:44–48

    Google Scholar 

  • Murphy DJ (2010) Manipulation of oil crops for industrial applications. In: Singh BP (ed) Industrial crops and uses. CABI, UK, pp 183–206

    Chapter  Google Scholar 

  • Murphy DJ (2011) Plants, biotechnology and agriculture. CABI, UK

    Google Scholar 

  • Murphy DJ, Ross JHE (1998) Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Plant J 13:1–16

    PubMed  CAS  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid body formation. Trends Biochem Sci 24:109–115

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ, Woodrow IE (1983) Lateral heterogeneity in the distribution of acyl lipids and proteins in photosynthetic membranes. Biochim Biophys Acta 725:104–112

    Article  CAS  Google Scholar 

  • Murphy DJ, Hernendez-Pinzon I, Patel K, Hope RG, McLauchlan J (2000) New insights into the mechanisms of lipid-body biogenesis in plants and other organisms. Biochem Soc Trans 28:710–711

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ, Hernandez-Pinzon I, Patel K (2001) Roles of lipid bodies and lipid-body proteins in seeds and other tissues. J Plant Physiol 158:471–478

    Article  CAS  Google Scholar 

  • Murphy G, Rouse RL, Polk WW, Henk WG, Barker SA, Boudreaux MJ, Floyd ZE, Penn AL (2008) Combustion-derived hydrocarbons localize to lipid droplets in respiratory cells. Am J Respir Cell Mol Biol 38:532–540

    Article  PubMed  CAS  Google Scholar 

  • Murphy S, Martin S, Parton RG (2009) Lipid droplet–organelle interactions: sharing the fats. Biochim Biophys Acta 1791:441–447

    PubMed  CAS  Google Scholar 

  • Murphy S, Martin S, Parton RG (2010) Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 5:e15030

    Article  PubMed  CAS  Google Scholar 

  • Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677

    Article  PubMed  CAS  Google Scholar 

  • Naested H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Rogers JC, Mundy J (2000) Caleosins: Ca2+-binding proteins associated with lipid bodies. J Plant Mol Biol 44:463–476

    Article  CAS  Google Scholar 

  • Nakamura N, Banno Y, Tamiya-Koizumi K (2005) Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem Biophys Res Commun 335:117–123

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Cheng JX, Xie XS (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44:2202–2208

    Article  PubMed  CAS  Google Scholar 

  • Naslavsky N, Rahajeng J, Rapaport D, Horowitz M, Caplan S (2007) EHD1 regulates cholesterol homeostasis and lipid droplet storage. Biochem Biophys Res Commun 357:792–799

    Article  PubMed  CAS  Google Scholar 

  • Neuberger T, Sreenivasulu N, Rokitta M, Rolletschek H, Göbel C, Rutten T, Radchuk Feussner I, Wobus U, Jakob P, Webb A, Ljudmilla Borisjuk L (2008) Quantitative imaging of oil storage in developing crop seeds. Plant Biotech J 6:31–45

    CAS  Google Scholar 

  • Nguyen LN, Nosanchuk JD (2011) Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1. Cell Cycle 10(18):3159–3167

    Google Scholar 

  • Nguyen LN, Hamari Z, Kadereit B, Trofa D, Agovino M, Martinez LR, Gacser A, Silver DL, Nosanchuk JD (2011) Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microb Infect 13:663–672

    Article  CAS  Google Scholar 

  • Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao H, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821

    PubMed  CAS  Google Scholar 

  • Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    Article  PubMed  CAS  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 14:101–114

    Article  Google Scholar 

  • Ohlrogge JN, Pollard MR, Stumpf PK (1978) Studies on biosynthesis of waxes by developing jojoba seed tissue. Lipids 13:203–210

    Article  CAS  Google Scholar 

  • Ohsaki Y, Cheng J, Fujita A, Tokumoto T, Fujimoto T (2006) Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell 17:2674–2683

    Article  PubMed  CAS  Google Scholar 

  • Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121:2415–2422

    Article  PubMed  CAS  Google Scholar 

  • Ohsaki Y, Cheng J, Suzuki M, Shinohara Y, Fujita A, Fujimoto T (2009) Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta 1791:399–407

    PubMed  CAS  Google Scholar 

  • Olofsson SO, Boren J (2005) Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 258:395–410

    Article  PubMed  CAS  Google Scholar 

  • Olofsson SO, Boström P, Andersson L, Rutberg M, Levin M, Perman J, Boren J (2008) Triglyceride containing lipid droplets and lipid droplet-associated proteins. Curr Opin Lipidol 19:441–447

    Article  PubMed  CAS  Google Scholar 

  • Olofsson SO, Boström P, Andersson L, Rutberg M, Perman J, Borén J (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 1791:448–458

    PubMed  CAS  Google Scholar 

  • Olzmann JA, Kopito RR (2011) Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J Biol Chem 286:27872–27874

    Article  PubMed  CAS  Google Scholar 

  • Orban T, Palczewska G, Palczewski K (2011) Retinyl ester storage particles (retinosomes) from the retinal pigmented epithelium resemble lipid droplets in other tissues. J Biol Chem 286:17248–17258

    Article  PubMed  CAS  Google Scholar 

  • Orlicky DJ, Roede JR, Bales E, Greenwood C, Greenberg A, Petersen D, McManaman JL (2011) Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties. Alcohol Clin Exp Res 35:1020–1033

    Article  PubMed  CAS  Google Scholar 

  • Öst A, Ortegren U, Gustavsson J, Nystrom FH, Stralfors P (2005) Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem 280:5–8

    PubMed  Google Scholar 

  • Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Ostermeyer AG, Ramcharan LT, Zeng Y, Lublin DM, Brown DA (2004) Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets. J Cell Biol 164:69–78

    Article  PubMed  CAS  Google Scholar 

  • Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, Yamada N (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97:787–792

    Article  PubMed  CAS  Google Scholar 

  • Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118:2601–2611

    Article  PubMed  CAS  Google Scholar 

  • Pacheco P, Bozza FA, Gomes RN, Bozza M, Weller PF, Faria-Neto HC, Bozza PT (2002) Lipopolysaccharide-induced leukocyte lipid body formation in vivo: innate immunity elicited intracellular loci involved in eicosanoid metabolism. J Immunol 169:6498–6506

    PubMed  CAS  Google Scholar 

  • Page WJ, Sherburne R, D’Elia L, Graham LL (1995) Poly(-hydroxybutyrate) extrusion from pleomorphic cells of Azotobacter vinelandii UWD. Can J Microbiol 41:22–31

    Article  CAS  Google Scholar 

  • Palacpac NMQ, Hiramine Y, Mi-ichi F, Torii M, Kita K, Hiramatsu R, Horii T, Mitamura T (2004) Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J Cell Sci 117:1469–1480

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Attardo GM, Hansen IA, Raikhel AS (2006) GATA factor translation is the final downstream step in the amino acid/target-of-rapamycin-mediated vitellogenin gene expression in the anautogenous mosquito Aedes aegypti. J Biol Chem 281:11167–11176

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveoli. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    Article  PubMed  CAS  Google Scholar 

  • Payne VA, Grimsey N, Tuthill A, Virtue S, Gray SL, Dalla Nora E, Semple RK, O’Rahilly S, Rochford JJ (2008) The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57:2055–2060

    Article  PubMed  CAS  Google Scholar 

  • Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861

    Article  PubMed  CAS  Google Scholar 

  • Péterfy M, Phan J, Xu P, Reue K (2001) Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27:121–124

    Article  PubMed  Google Scholar 

  • Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, Menozzi FD (2001) The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190–194

    Article  PubMed  CAS  Google Scholar 

  • Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284:30981–30993

    Article  PubMed  CAS  Google Scholar 

  • Phan J, Reue K (2005) Lipin, a lipodystrophy and obesity gene. Cell Metab 1:73–83

    Article  PubMed  CAS  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1997) Intra and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J 11:549–562

    Article  PubMed  CAS  Google Scholar 

  • Pihakaski K, Pihakaski S, Karunen P, Kallio P (1987) Seasonal changes in leaf lipids of Diapensia lapponica, with special reference to storage lipid bodies. Nord J Bot 7:281–292

    Article  CAS  Google Scholar 

  • Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG (2001) A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152:1057–1070

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG (2005) Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 16:2091–2105

    Article  PubMed  CAS  Google Scholar 

  • Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Pötter M, Madkour MH, Mayer F, Steinbüüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiol 148:2413–2426

    Google Scholar 

  • Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiol 150:2301–2311

    Article  CAS  Google Scholar 

  • Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon JP, Rouster J, Paul W, Rogowsky PM (2011) Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol 156:674–686

    Article  PubMed  CAS  Google Scholar 

  • Pozueta-Romero J, Rafia F, Houlne G, Cheniclet C, Carde JP, Schantz ML, Schantz R (1997) A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol 115:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Pruvot G, Cuine S, Peltier G, Rey P (1996a) Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants. Planta 198:471–479

    Article  PubMed  CAS  Google Scholar 

  • Pruvot G, Massimino J, Peltier G, Rey P (1996b) Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought-induced proteins in Solanum tuberosum. Physiol Plant 97:123–131

    Article  CAS  Google Scholar 

  • Puigserver P, Kahn CR (2008) Mammalian metabolism in aging. In: Guarente LP, Partridge L, Wallace DC (eds) Molecular biology of aging. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 545–574

    Google Scholar 

  • Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, Lopez-Miranda J, Fruhbeck G, Vazquez-Martinez R, Malagon MM (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6:10.1371

    Article  CAS  Google Scholar 

  • Puri V, Czech MP (2008) Lipid droplets: FSP27 knockout enhances their sizzle. J Clin Invest 118:2693–2696

    PubMed  CAS  Google Scholar 

  • Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, Chakladar A, Czech MP (2007) Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282:34213–34218

    Article  PubMed  CAS  Google Scholar 

  • Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugi RA, Czech MP (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 105:7833–7838

    Article  PubMed  CAS  Google Scholar 

  • Purkrtova Z, d'Andrea S, Jolivet P, Lipovova P, Kralova B, Kodicek M, Chardot T (2007) Structural properties of caleosin: a MS and CD study. Arch Biochem Biophys 464:335–343

    Article  PubMed  CAS  Google Scholar 

  • Quesada E, Béjar V, Ferrer MR, Calvo C, Llamas I, Martínez-Checa F, Arias S, Ruiz-García C, Páez R, Martínez-Cánovas J, Del Moral A (2004) Moderately halophilic, exopolysaccharide-producing bacteria. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, pp 297–314

    Google Scholar 

  • Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490

    Article  PubMed  CAS  Google Scholar 

  • Quillaguamán J, Delgado O, Mattiasson B, Hatti-Kaul R (2006) Poly(ß-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enz Microbial Technol 38:148–154

    Article  CAS  Google Scholar 

  • Quillaguamán J, Doan-Van T, Guzmán H, Guzmán D, Martin J, Everest A, Hatti-Kaul R (2008) Poly(ß-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture. Appl Microbiol Biotechnol 78:227–232

    Article  PubMed  CAS  Google Scholar 

  • Quillaguamán J, Guzmán H, Doan-Van T, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Quiroga AD, Lehner R (2011) Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab 22:218–225

    Article  PubMed  CAS  Google Scholar 

  • Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, Schulze A, Lucke B, Lutzkendorf S, Karbasiyan M, Bachmann S, Spuler S, Schuelke M (2010) Fatal cardiac arrhythmia and long-qt syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (cgl4) due to ptrf-cavin mutations. PLoS Genet 6:e1000874

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Le Lay S, Illges H (2007) Raft association and lipid droplet targeting of flotillins are independent of caveolin. Biol Chem 388:307–314

    Article  PubMed  CAS  Google Scholar 

  • Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  PubMed  CAS  Google Scholar 

  • Ricquier D (2010) Biology of brown adipose tissue: view from the chair. Int J Obesity 34:S3–S6

    Article  Google Scholar 

  • Riding RT, Little CHA (1984) Anatomy and histochemistry of Abies balsamea cambial zone cells during the onset and breaking of dormancy. Can J Bot 62:2570–2579

    Article  CAS  Google Scholar 

  • Rinia HA, Burger KNJ, Bonn M, Müller M (2008) Label-free cellular imaging of lipid composition and packing of individual lipid droplets using multiplex CARS microscopy. Biophys J 95:4908–4914

    Article  PubMed  CAS  Google Scholar 

  • Rinne PLH, Welling A, Kaikuranta P (1998) Onset of freezing tolerance in birch (Betula pubescens Ehrh) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ 21:601–611

    Article  CAS  Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C (2002) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    Article  Google Scholar 

  • Rinne PLH, Ruonala R, Ripel L, van der Schoot C (2008) Dormancy release-proteins in the shoot apical meristem of populus. Physiol Plant S133:P06–P047

    Google Scholar 

  • Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer K-P, Troyer D, Robenek H (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18:866–868

    PubMed  CAS  Google Scholar 

  • Robenek H, Robenek MJ, Buers I, Lorkowski S, Hofnagel O, Troyer D, Severs NJ (2005a) Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J Biol Chem 280:26330–26338

    Article  PubMed  CAS  Google Scholar 

  • Robenek H, Robenek MJ, Troyer D (2005b) PAT family proteins pervade lipid droplet cores. J Lipid Res 46:1331–1338

    Article  PubMed  CAS  Google Scholar 

  • Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224

    Article  PubMed  CAS  Google Scholar 

  • Robenek H, Buers I, Robenek MJ, Hofnagel O, Ruebel A, Troyer D, Severs NJ (2011) Topography of lipid droplet-associated proteins: insights from freeze-fracture replica immunogold labeling. J Lipids Article 2011:ID 409371

  • Rodrigo MP, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18:1961–1974

    Article  CAS  Google Scholar 

  • Roingeard P, Hourioux C, Blanchard E, Prensier G (2008) Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem Cell Biol 13:561–566

    Article  CAS  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Schlereth A, Körner M, Feussner K, Berndt E, Melzer M, Hornung E, Feussner I (2011) The lipoxygenase dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J Exp Bot 62:749–760

    Article  PubMed  CAS  Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involves ethylene. Plant J 46:628–640

    Article  PubMed  CAS  Google Scholar 

  • Russell AP (2004) Lipotoxicity: the obese and endurance-trained paradox. Int J Obes Relat Metab Disord 28:S66–S71

    Article  PubMed  CAS  Google Scholar 

  • Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, Da Poian AT, Bozza PT, Gamarnik AV (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632

    Article  PubMed  CAS  Google Scholar 

  • Sanjaya DTP, Weise SE, Benning C (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotech J 9:874–883

    Article  CAS  Google Scholar 

  • Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J 24:1931–1941

    Article  PubMed  CAS  Google Scholar 

  • Sargent JA, Osborne DJ (1980) A comparative study of the fine structure of coleorhiza and root cells during the early hours of germination of rye embryos. Protoplasma 104:91–103

    Article  Google Scholar 

  • Sarmiento C, Ross JH, Herman E, Murphy DJ (1997) Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J 11:783–796

    Article  PubMed  CAS  Google Scholar 

  • Schein M, Yang Z, Mitchell-Olds T, Schmid K (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 21:659–669

    Article  PubMed  CAS  Google Scholar 

  • Scherzer CR, Feany MB (2004) Yeast genetics targets lipids in Parkinson’s disease. Trends Genet 20:273–277

    Article  PubMed  CAS  Google Scholar 

  • Schimek C, Eibel P, Grolig F, Horie T, Ootaki T, Galland P (1999) Gravitropism in Phycomyces: a role for sedimenting protein crystals and floating lipid globules. Planta 210:132–142

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MA, Herman EM (2009) Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol Plant 1:910–924

    Article  CAS  Google Scholar 

  • Schneider EF, Seaman WL (1977) Ontogeny of lipid bodies in the endoplasmic reticulum of Fusarium sulphureum. Can J Microbiol 23:190–196

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D (2005) The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425

    Article  PubMed  CAS  Google Scholar 

  • Scott RW, Winichayakul S, Roldan M, Cookson R, Willingham M, Castle M, Pueschel R, Peng CC, Tzen JTC, Roberts NJ (2010) Elevation of oil body integrity and emulsion stability by polyoleosins, multiple oleosin units joined in tandem head-to-tail fusions. Plant Biotech J 8:912–927

    Article  CAS  Google Scholar 

  • Shah J (2005) Lipid, lipases and lipid-modifying enzymes in plant disease resistance. Ann Rev Phytopathol 43:229–260

    Article  CAS  Google Scholar 

  • Shah J, Chaturvedi R (2008) Lipid signals in plant–pathogen interactions. Ann Plant Rev 34:292–333

    Google Scholar 

  • Sheehan J (2009) Engineering direct conversion of CO2 to biofuel. Nat Biotechnol 27:1128–1129

    Article  PubMed  CAS  Google Scholar 

  • Shelness GS, Ledford AS (2005) Evolution and mechanism of apolipoprotein B-containing lipoprotein assembly. Curr Opin Lipidol 16:325–332

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987

    Article  PubMed  CAS  Google Scholar 

  • Shimada TL, Nara-Nishimura I (2010) Oil-body-membrane proteins and their physiological functions in plants. Biol Pharm Bull 33:360–363

    Article  PubMed  CAS  Google Scholar 

  • Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara-Nishimura I (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 55:798–809

    Article  PubMed  CAS  Google Scholar 

  • Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP (2008) Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135:1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Simkin AJ, Gaffé J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochem 68:1545–1556

    Article  CAS  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016

    Article  PubMed  CAS  Google Scholar 

  • Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotech J 7:694–703

    Article  CAS  Google Scholar 

  • Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL (2006) ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7:106–113

    Article  PubMed  CAS  Google Scholar 

  • Snell KD, Peoples OP (2002) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metabol Eng 4:29–40

    Article  CAS  Google Scholar 

  • Somwar R, Roberts CT, Varlamov O (2011) Live-cell imaging demonstrates rapid cargo exchange between lipid droplets in adipocytes. FEBS Lett 585:1946–1950

    Article  PubMed  CAS  Google Scholar 

  • Sorgi CA, Secatto A, Fontanari C, Turato WM, Belangér C, de Medeiros AI, Kashima S, Marleau S, Covas DT, Bozza PT, Faccioli LH (2009) Histoplasma capsulatum cell wall ß-glucan induces lipid body formation through CD18, TLR2, and Dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 182:4025–4035

    Article  PubMed  CAS  Google Scholar 

  • Spandl J, Lohmann D, Kuerschner L, Moessinger C, Thiele C (2011) Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J Biol Chem 286:5599–5606

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Frigerio L, Tolley N, Hawes C (2009) The plant endoplasmic reticulum: a cell-wide web. Biochem J 423:145–155

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankame B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1842

    Article  PubMed  CAS  Google Scholar 

  • Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, Chan L, Kimmel AR, Londos C (2006) Functional compensation for adipose differentiation-related protein (ADFP) by TIP47 in an adfp nullembryonic cell line. J Biol Chem 281:34341–34348

    Article  PubMed  CAS  Google Scholar 

  • Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RG, Goodman JM (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104:20890–20895

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K (2000) An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol 41:898–903

    Article  PubMed  CAS  Google Scholar 

  • Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA 98:6494–6499

    Article  PubMed  CAS  Google Scholar 

  • Targett-Adams P, Chambers D, Gledhill S, Hope RG, Johannes JF, Girod A, McLauchlan J (2003) Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 278:15998–16007

    Article  PubMed  CAS  Google Scholar 

  • Teixeira L, Rabouille C, Rorth P, Ephrussi A, Vanzo NF (2003) Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech Dev 120:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Tessmer N, König S, Malkus U, Reichelt R, Pötter M, Steinbüchel A (2007) Heat-shock protein HspA mimics the function of phasins sensu strictu in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Microbiol 153:366–374

    Article  CAS  Google Scholar 

  • Than NG, Sumegi B, Bellyei S, Berki T, Szekeres G, Janaky T, Szigeti A, Bohn H, Than GN (2003) Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. Eur J Biochem 270:1176–1188

    Article  PubMed  CAS  Google Scholar 

  • Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20:378–385

    Article  PubMed  CAS  Google Scholar 

  • Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    PubMed  CAS  Google Scholar 

  • Tian Y, Bi J, Shui G, Liu Z, Xiang Y, Liu Y, Wenk MR, Yang H, Huang X (2011) Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 7:e1001364

    Article  PubMed  CAS  Google Scholar 

  • Ting JTL, Wu SSH, Ratnayake C, Huang AHC (1998) Constituents of the tapetosomes and elaioplasts in Brassica campestris and their degradation and retention during microsporogenesis. Plant J 16:541–551

    Article  PubMed  CAS  Google Scholar 

  • Tnani H, López I, Jouenne T, Vicient CM (2011) Protein composition analysis of oil bodies from maize embryos during germination. J Plant Physiol 168:510–513

    Article  PubMed  CAS  Google Scholar 

  • Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, Yang H, Wen Z, Li P (2008) Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 3:e2890

    Article  PubMed  CAS  Google Scholar 

  • Toorop PE, Barroco RM, Engler G, Groot SP, Hilhorst HW (2005) Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta 221:637–647

    Article  PubMed  CAS  Google Scholar 

  • Tranbarger TT, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis D, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 16:109–117

    Article  CAS  Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    Article  PubMed  CAS  Google Scholar 

  • Turró S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernandez MA, Albor CV, Gaus K, Grewal T, Enrich C, Pol A (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7:1254–1269

    Article  PubMed  CAS  Google Scholar 

  • Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Uittenbogaard A, Everson WV, Matveev SV, Smart EJ (2002) Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin–annexin II lipid–protein complex. J Biol Chem 277:4925–4931

    Article  PubMed  CAS  Google Scholar 

  • Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R (2004) Association of stomatin with lipid bodies. J Biol Chem 279:23699–23709

    Article  PubMed  CAS  Google Scholar 

  • Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21:345–352

    Article  PubMed  CAS  Google Scholar 

  • Valdearcos M, Esquinas E, Meana C, Gil-de-Gómez L, Guijas C, Balsinde J, Balboa MA (2011) Subcellular localization and role of Lipin-1 in human macrophages. J Immunol 186:6004–6013

    Article  PubMed  CAS  Google Scholar 

  • Van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci 180:120–131

    Article  PubMed  CAS  Google Scholar 

  • Van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non- adipose tissue and lipotoxicity. Physiol Behav 94:231–241

    Article  PubMed  CAS  Google Scholar 

  • Van Meer G, de Kroon AIMP (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8

    Article  PubMed  CAS  Google Scholar 

  • Van Meer G, Voelker DG, Feignenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  CAS  Google Scholar 

  • Vance DE, Vance JE (2008) Phospholipid biosynthesis in eukaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 213–244

    Chapter  Google Scholar 

  • Vandana S, Bhatla SC (2006) Evidence for the probable oil body association of a thiol-protease, leading to oleosin degradation in sunflower seedling cotyledons. Plant Physiol Biochem 44:714–723

    Article  PubMed  CAS  Google Scholar 

  • Vazquez GJ, Wieczoreck R, Steinbüchel A, Mendez BS (1996) Poly-(3-hydroxybutyrate) granules in Bacillus megaterium. Isolation and analysis of associated proteins. Rev Argent Microbiol 28:118–122

    PubMed  CAS  Google Scholar 

  • Vereb G, Szöllösi J, Matkó J, Nagy P, Farkas T, Vıgh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer–Nicolson model. Proc Natl Acad Sci USA 100:8053–8058

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Kessler F, Bréhélin C (2007) Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol 7:4

    Article  PubMed  CAS  Google Scholar 

  • Vielemeyer O, McIntosh MT, Joiner KA, Coppens I (2004) Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 135:197–209

    Article  PubMed  CAS  Google Scholar 

  • Vigil EL, Steere RL, Wergin WP, Christiansen MN (1985) Tissue preparation and fine structure of radicle apex from cotton seeds. Protoplasma 129:168–177

    Article  Google Scholar 

  • Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43:862–876

    Article  PubMed  CAS  Google Scholar 

  • Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075

    Article  PubMed  CAS  Google Scholar 

  • Vishnevetsky M, Ovadis M, Itzhaki H, Levy M, Libal Weksler Y, Adam Z, Vainstein A (1996) Molecular cloning of a carotenoid-associated protein from Cucumis sativa corollas: homologous genes involved in carotenoid biosynthesis. Plant J 10:1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Volk GM, Crane J, Caspersen AM, Hill LM, Gardner C, Walters C (2006) Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224:1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, Lisanti MP (1999) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 274:12702–12709

    Article  PubMed  CAS  Google Scholar 

  • Von Wettstein D (2001) Discovery of a protein required for photosynthetic membrane assembly. Proc Natl Acad Sci USA 98:3633–3635

    Article  Google Scholar 

  • Wahlroos T, Soukka J, Denesyuk A, Wahlroos R, Korpela T, Kilby NJ (2003) Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genesis 35:125–132

    Article  PubMed  CAS  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  CAS  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stoveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  PubMed  CAS  Google Scholar 

  • Walther TC, Farese RV (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466

    PubMed  Google Scholar 

  • Wan HC, Melo RC, Jin Z, Dvorak AM, Weller PF (2007) Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J 21:167–178

    Article  PubMed  CAS  Google Scholar 

  • Wang C, St Leger RJ (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Sztalryd C (2011) Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metab 22:197–203

    Article  PubMed  CAS  Google Scholar 

  • Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960

    Article  PubMed  CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8:1856–1868

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Thayil A, Jesacher A, Grieve K, Debarre D, Wilson T, Booth M, Srinivas S (2010) Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy. BMC Cell Biol 11:38

    Article  PubMed  CAS  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) α-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  PubMed  CAS  Google Scholar 

  • Welte MA (2007) Proteins under new management: lipid droplets deliver. Trends Cell Biol 17:363–369

    Article  PubMed  CAS  Google Scholar 

  • Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37:991–996

    Article  PubMed  CAS  Google Scholar 

  • Welte MA, Cermelli S, Griner J, Viera A, Guo Y, Kim DH, Gindhart JG, Gross SP (2005) Regulation of lipid-droplet transport by the Perilipin homologue LSD2. Curr Biol 15:1266–1275

    Article  PubMed  CAS  Google Scholar 

  • Wetzel CLR, Jensen WA (1992) Studies of pollen maturation in cotton: the storage reserve accumulation phase. Sexual Plant Reprod 5:117–127

    Article  Google Scholar 

  • Whigham LD, Israel BA, Atkinson RL (2005) Adipogenic potential of multiple human adenoviruses in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol 290:190–194

    Article  CAS  Google Scholar 

  • Whitfield HV (1992) The synthesis and utilisation of very-long chain fatty acids by developing seeds of nasturtium and other oilseeds. PhD thesis, University of East Anglia, Norwich, UK

  • Wilson E (1896) The cell in development and inheritance. Macmillan, New York

    Book  Google Scholar 

  • Wolins N, Quaynor B, Skinner J, Schoenfish M, Tzekov A, Bickel P (2005) S3-12, adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 280:19146–19155

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Brasaemle DL, Bickel PE (2006a) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC, Varma V, Yao-Borengasser A, Rasouli N, Kern PA, Finck BN, Bickel PE (2006b) OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55:3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Wright LC, Djordjevic JT, Schibeci SD, Himmelreich U, Muljadi N, Williamson P, Lynch GW (2003) Detergent-resistant membrane fractions contribute to the total 1H NMR-visible lipid signal in cells. Eur J Biochem 270:2091–2100

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Howell KE, Neville MC, Yates JR, McManaman JL (2000) Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21:3470–3482

    Article  PubMed  CAS  Google Scholar 

  • Wu YY, Chou YR, Wang CS, Tseng TH, Chen LJ, Tzen JT (2010) Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol Biochem 48:81–89

    Article  PubMed  CAS  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nature Rev Mol Cell Biol 9:162–176

    Article  CAS  Google Scholar 

  • Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E (2006) Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci USA 103:6061–6066

    Article  PubMed  CAS  Google Scholar 

  • Yao M, Huang Y, Shioi K, Hattori K, Murakami T, Nakaigawa N, Kishida T, Nagashima Y, Kubota Y (2007) Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res 13:152–160

    Article  PubMed  CAS  Google Scholar 

  • Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301

    Article  PubMed  CAS  Google Scholar 

  • Ytterberg AJ, Peltier J, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM, Weller PF (1998) Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol 152:759–769

    PubMed  CAS  Google Scholar 

  • Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA (2011) Targeting the motor regulator Klar to lipid droplets. BMC Cell Biol 12:9

    Article  PubMed  CAS  Google Scholar 

  • Zanghellini J, Ruckerbauer D, Wodlei F, von Grunberg HH, Jungreuthmayer C (2010a) Phospholipid demixing: molecular interpretation of lipid droplet biogenesis. Advan Planar Lipid Bilayers Liposomes 11:1–28

    Article  CAS  Google Scholar 

  • Zanghellini J, Wodlei F, von Grunberg HH (2010b) Phospholipid demixing and the birth of a lipid droplet. J Theor Biol 264:952–961

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Bartz R, Liu P, Anderson RG (2008) Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci 121:1852–1860

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RG (2009a) Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 122:3694–3702

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Huang Y, Peng G, Anderson RG, Liu P (2009b) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921

    Article  PubMed  CAS  Google Scholar 

  • Zhang SO, Box AC, Xu N, Le Men J, Yu J, Guo F, Trimble R, Mak HY (2010a) Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci USA 107:4640–4645

    Article  PubMed  CAS  Google Scholar 

  • Zhang SO, Trimble R, Guo F, Mak HY (2010b) Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 11:96

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35:49–56

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce membrane curvature. Nat Rev Mol Cell Biol 7:9–19

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to the many colleagues who kindly sent me copies of recent publications, including many pre-publication manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis J. Murphy.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, D.J. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249, 541–585 (2012). https://doi.org/10.1007/s00709-011-0329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0329-7

Keywords

Navigation