Skip to main content

Advertisement

Log in

Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The osmotic potential and effects of plasmolysis were investigated in two different Klebsormidium strains from alpine habitats by incubation in 300–2,000 (3,000) mM sorbitol. Several members of this genus were previously found to tolerate desiccation in the vegetative state yet information was lacking on the osmotic potentials of these algae. The strains were morphologically determined as Klebsormidium crenulatum and Klebsormidium nitens. These species belong to distinct clades, as verified by phylogenetic analysis of the rbcL gene. K. crenulatum is part of to the K. crenulatum/mucosum (‘F’ clade) and K. nitens of the ‘E2’ clade. Plasmolysis occurred in K. crenulatum at 800 mM sorbitol (961 mOsmol kg−1, Ψ = −2.09 MPa) and in K. nitens at 600 mM sorbitol (720 mOsmol kg−1, Ψ = −1.67 MPa). These are extraordinarily high osmotic values (very negative osmotic potentials) compared with values reported for other green algae. In K. crenulatum, the maximum photosynthetic rate (Pmax) in the light-saturated range was 116 μmol O2 h−1 mg−1 chl a. Incubation in 1,000 mM sorbitol decreased Pmax to 74.1% of the initial value, whereas 2,000 mM sorbitol (Ψ = −5.87 MPa) lead to an almost complete loss of oxygen production. In K. nitens, Pmax was 91 μmol O2 h−1 mg−1 chl a under control conditions and incubation in 800 mM sorbitol did not decrease Pmax, 2,000 mM sorbitol decreased Pmax only to about 62.6% of the initial value whereas 3,000 mM sorbitol stopped oxygen evolution. This indicated a broader amplitude for photosynthesis in the examined strain of K. nitens. Control samples and samples plasmolysed for 3 h in 800 mM sorbitol (K. nitens), 1,000 mM sorbitol (K. crenulatum), or 2,000 mM sorbitol were investigated by transmission electron microscopy after chemical or high-pressure freeze fixation. In cells undergoing plasmolysis the protoplasts were retracted from the cell wall, the cytoplasm appeared dense, vacuoles were small and fragmented, and the cytoplasm was filled with ribosomes. Thin cytoplasmic strands were connected to the cell wall; 2,000 mM sorbitol increased the effect. The content of soluble carbohydrates in these two strains was investigated by HPLC, as this is one known mechanism for cells to maintain high osmotic pressure of the cytosol. Both Klebsormidium species contained diverse soluble carbohydrates, including a dominant mixed peak of unidentified oligosaccharides, and more minor amounts of raffinose, sucrose, glucose, xylose, galactose, mannose, inositol, fructose, glycerol, mannitol, and sorbitol. The total content of soluble carbohydrates was approximately 1.2% of the dry weight, indicating that this is not a major factor contributing to the high osmotic potential in these strains of Klebsormidium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954

    Article  PubMed  CAS  Google Scholar 

  • Aichinger N, Lütz-Meindl U (2005) Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells. J Microsc-Oxford 219:86–94

    Article  CAS  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerant algae and its industrial potential. Ann Rev Microbiol 37:95–119

    Article  CAS  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  • Berkowitz GA, Gibbs M (1982) Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast. Plant Physiol 70:1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC (2010) Chlorella minutissima—a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotech 161:523–536

    Article  CAS  Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagieneum. Plant J 1:355–359

    Article  Google Scholar 

  • Bolte S, Talbot C, Boutte Y, Catrice C, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc- Oxford 214:159–173

    Article  CAS  Google Scholar 

  • Brown LM, Hellebust JA (1978) Sorbitol and proline as intracellular osmotic solutes in the green alga Stichococcus bacillaris. Can J Bot 56:676–679

    Article  CAS  Google Scholar 

  • Buchner O, Neuner G (2010) Freezing cytorrhysis and critical temperature thresholds for phytosystem II in the peat moss Sphagnum capillifolium. Protoplasma 243:63–72

    Article  PubMed  CAS  Google Scholar 

  • Büdel B (2005) Microorganisms of biological crusts on soil surface. In: Buscot F, Varma A (eds) Microorganisms in Soils: Roles in Genesis and Functions, Soil Biology 3, pp 307–323

  • Chalker BE, Dunlap WC, Oliver JK (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J Exp Mar Biol Ecol 73:37–56

    Article  Google Scholar 

  • Cowan AK, Rose PD, Horne LG (1992) Dunaliella salina—a model system for studying the response of plant cells to stress. J Exp Bot 43:1535–1547

    Article  CAS  Google Scholar 

  • Darehshouri A, Lütz-Meindl U (2010) H2O2 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy. Protoplasma 239:49–56

    Article  PubMed  CAS  Google Scholar 

  • Darienko T, Gustavs L, Mudimu O, Menendez CR, Schumann R, Karsten U, Friedl T, Pröschold T (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur J Phycol 45:1–17

    Article  Google Scholar 

  • Davis DJ, Burlak C, Money NP (2000) Osmotic pressure of fungal compatible osmolytes. Mycol Res 104:800–804

    Article  CAS  Google Scholar 

  • De Winder B, Matthijs HCP, Mur LR (1990) The effect of dehydration and ion stress on carbon dioxide fixation in drought-tolerant phototrophic microorganisms. FEMS Microb Ecol 74:33–38

    Article  Google Scholar 

  • Domozych DS, Roberts R, Danyow C, Flitter R, Smith B, Providence K (2003) Plasmolysis, hechtian strand formation, and localized membrane-wall adhesions in the desmid, Closterium acerosum (Chlorophyta). J Phycol 39:1194–1206

    Article  CAS  Google Scholar 

  • Elster J, Degma P, Kovacik L, Valentova L, Sramkova K, Pereira B (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from Antarctic, Arctic and Slovakia. Biologia 63:839–847

    Article  Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer, Stuttgart

    Google Scholar 

  • Floyd GL, Stewart KD, Mattox KR (1972) Cellular organization, mitosis, and cytokinesis in the ulotrichalean alga Klebsormidium. J Phycol 8:176–184

    Google Scholar 

  • Fritsch FE, Haines FM (1923) Moisture relation of terrestrial algae. II. The changes during exposure to drought and treatment with hypertonic solutions. Ann Bot 37:683–728

    Google Scholar 

  • Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516

    Google Scholar 

  • Goyal A (2007a) Osmoregulation in Dunaliella, Part I: effects of osmotic stress on photosynthesis, dark respiration and glycerol metabolism in Dunaliella tertiolecta and its salt-sensitive mutant (HL 25/8). Plant Physiol Bioch 45:696–704

    Article  CAS  Google Scholar 

  • Goyal A (2007b) Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Bioch 45:705–710

    Article  CAS  Google Scholar 

  • Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30:1240–1255

    Article  PubMed  CAS  Google Scholar 

  • Gustavs L, Eggert A, Michalik D, Karsten U (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243:3–14

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Spindelböck J, Neuner G (2008) Mesophyll freezing and effects of freeze dehydration visualized by simultaneous measurement of IDTA and differential imaging chlorophyll fluorescence. Plant Cell Environ 31:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Hadi MR, Shariati M, Afsharzadeh S (2008) Microalgal biotechnology: carotenoide and glycerol production by the green alga Dunaliella isolated from the Gave-Khooni salt marsh. Biotechol Bioproc E 13:540–544

    Article  CAS  Google Scholar 

  • Holzinger A (2009) Desiccation tolerance in green algae: implications of physiological adaptation and structural requirements. In: Hagen KN (ed) Algae: nutrition, pollution control and energy sources. Nova Science Publishers Inc., New York, pp 41–56

    Google Scholar 

  • Holzinger A, Karsten U, Lütz C, Wiencke C (2006) Ultrastructure and photosynthesis in the supralittoral green macroalga Prasiola crispa (Lightfoot) Kützing from Spitsbergen (Norway) under UV exposure. Phycologia 45:168–177

    Article  Google Scholar 

  • Holzinger A, Roleda M, Lütz C (2009) The vegetative arctic green alga Zygnema is insensitive to experimental UV exposure. Micron 40:831–838

    Article  PubMed  Google Scholar 

  • Holzinger A, Tschaikner A, Remias D (2010) Cytoarchitecture of the desiccation-tolerant green alga Zygogonium ericetorum. Protoplasma 243:15–24

    Article  PubMed  CAS  Google Scholar 

  • Holzinger A, Lütz C, Karsten U (2011) Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol 47:591–602

    Article  Google Scholar 

  • Honda M, Hashimoto H (2007) Close association of centrosomes to the distal ends of the microbody during its growth, division and partitioning in the green alga Klebsormidium flaccidum. Protoplasma 231:127–135

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jacob A, Kirst GO, Wiencke C, Lehmann H (1991) Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol 139:57–62

    Article  CAS  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Jobson RW, Qui Y-L (2011) Amino acid compositional shifts during streptophyte transitions to terrestrial habitats. J Mol Evol 72:204–214

    Article  PubMed  CAS  Google Scholar 

  • Karsten U, Holzinger A (2011) Light, temperature and desiccation effects on photosynthetic activity and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol. doi:10.1007/s00248-011-9924-6

  • Karsten U, Lütz C, Holzinger A (2010) Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J Phycol 46:1187–1197

    Article  Google Scholar 

  • Katsaros CI, Varvarigos V, Gachon CM, Brand J, Motomura T, Nagasato C, Küpper FC (2011) Comparative immunofluorescence and ultrastructural analysis of microtubule organization in Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus (Chlorophyta). Protist 162:315–331

    Article  PubMed  Google Scholar 

  • Lokhorst GM (1996) Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. In: Jülich W (ed) Cryptogamic studies, vol 5. Gustav Fischer, Stuttgart, pp 1–132

    Google Scholar 

  • Lokhorst GM, Star W (1985) Ultrastructure of mitosis and cytokinesis in Klebsormidium mucosum nov. comb., formerly Ulothrix verrucosa (Chlorophyta). J Phycol 21:466–476

    Article  Google Scholar 

  • Lösch R (2003) Wasserhaushalt der Pflanzen. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Lüttge U, Büdel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biology 12:437–444

    Article  PubMed  Google Scholar 

  • McManus H, Lewis L (2011) Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex. J Phycol 47:152–163

    Article  Google Scholar 

  • Meindl U, Wittmann-Pinegger D, Kiermayer O (1989) Cell multiplication and ultrastructure of Micrasterias denticulata (Desmidiaceae) grown under salt stress. Plant Syst Evol 164:197–208

    Article  Google Scholar 

  • Mine I, Ozaki C, Sekida S, Okuda K (2011) Induction of gamete discharge by hypertonic treatment in the green alga Bryopsis plumosa (Caulerpales, Chlorophyta). Phycol Res 59:70–73

    Article  Google Scholar 

  • Morison MO, Sheath RG (1985) Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24:129–145

    Article  CAS  Google Scholar 

  • Nagao N, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ, Cushman JC, Koster KL (2010) Dehydration tolerance in plants. In: Sunkar R (ed) Plant stress tolerance, methods in molecular biology 639. Springer Science and Business Media, New York, pp 3–24

    Google Scholar 

  • Oparka KJ (1994) Plasmolysis: new insights into an old process. New Phytol 126:571–591

    Article  CAS  Google Scholar 

  • Oren A (2007) Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae. In: Seckbach J (ed) Algae and Cyanobacteria in Extreme Environments. Springer, Berlin, pp 641–655

    Google Scholar 

  • Pickett-Heaps J (1972) Cell division in Klebsormidium subtilissimum (formerly Ulothrix subtilissima) and its possible phylogenetic significance. Cytobios 6:167–183

    PubMed  CAS  Google Scholar 

  • Piercy A (1917) The structure and mode of life of a form of Hormidium flaccidum, A. Braun. Ann Bot 31:513–537

    Google Scholar 

  • Platt KA, Oliver MJ, Thomson WW (1997) Importance of the fixative for reliable ultrastructural preservation of poikilohydric plant tissues. Observations on dry, partially, and fully hydrated tissues of Selaginella lepidophylla. Ann Bot 80:599–610

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Pressel S, Duckett JG (2010) Cytological insights into the desiccation biology of a model system: moss protonemata. New Phytol 185:944–963

    Article  PubMed  Google Scholar 

  • Pressel S, Duckett JG, Ligrone R, Proctor MCF (2009) Effects of de- and rehydration in desiccation tolerant liverworts: a cytological and physiological study. Int J Plant Sci 170:182–199

    Article  Google Scholar 

  • Proctor MCF, Ligrone R, Duckett JG (2007) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot-London 99:75–93

    Article  CAS  Google Scholar 

  • Rambaut A, Drummond A (2003) Tracer: MCMC trace analysis tool. University of Oxford; Oxford, UK

    Google Scholar 

  • Raven JA (1982) The energetics of freshwater algae; energy requirements for biosynthesis and volume regulation. New Phytol 92:10–20

    Article  Google Scholar 

  • Raven JA (1995) Costs and benefits of low intracellular osmolarity in cells of freshwater algae. Funct Ecol 9:701–707

    Article  Google Scholar 

  • Remias D, Lütz C (2007) Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Studies 124:85–94

    Article  CAS  Google Scholar 

  • Remias D, Holzinger A, Lütz C (2009) Ultrastructure and physiological characterization of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European alps. Phycologia 48:302–312

    Article  Google Scholar 

  • Rindi F, Guiry MD, Lopez-Bautista JM (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol 44:1529–1540

    Article  Google Scholar 

  • Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, Lopez-Bautista JM (2011) Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogent Evol 58:218–231

    Article  Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of the terrestrial plants from continental Antarctica. Antarct Sci 4:413–420

    Google Scholar 

  • Škaloud P (2006) Variation and taxonomic significance of some morphological features in European strains of Klebsormidium (Klebsormidiophyceae, Streptophyta). Nova Hedwigia 83:533–550

    Article  Google Scholar 

  • Starr RC, Zeikus JA (1993) UTEX—the culture collection of algae at the University of Texas at Austin 1993 list of cultures. J Phycol 29:1–106

    Article  Google Scholar 

  • Swofford DL (2002) PAUP* Ver.# 4b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tschaikner A 2008. Soil algae and soil algal crusts in the alpine regions of Tyrol (Ötztal, Austria). PhD thesis, University of Innsbruck, p. 58

  • Volgger M, Lang I, Ovecka M, Lichtscheidl I (2010) Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress. Protoplasma 243:51–62

    Article  PubMed  Google Scholar 

  • Wegmann K (1986) Osmoregulation in eukaryotic algae. FEMS Microbiol Rev 39:37–43

    Article  CAS  Google Scholar 

  • Wesley-Smith J (2001) Freeze-substitution of dehydrated plant tissues: artefacts of aqueous fixation revisited. Protoplasma 218:154–167

    Article  PubMed  CAS  Google Scholar 

  • Willmer CM, Beattie LN (1978) Cellular osmotic phenomena during stomatal movements of Comelina communis I. Limitiations of the incipient plasmolysis technique for determining osmotic pressures. Protoplasma 95:321–332

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. U. Lütz-Meindl, University of Salzburg, Austria is kindly acknowledged for providing access to her Leica high-pressure freezing device. We thank Mag. A. Andosch, University of Salzburg for technical help with the freeze substitution. We would like to thank Prof. U. Karsten, University of Rostock, Germany for isolating the Klebsormidium strain from Innsbruck, for critically reading the manuscript and several helpful discussions. Dr. M. Roleda, AWI Bremerhaven, Germany is acknowledged for help in calculating the P–E curve parameters. The rbcL data were generated during a scientific stay of A.H. in L.A.L.’s laboratory, supported by the Office of International Affairs of the University of Innsbruck and a US NASA Exobiology NNX08AX20G grant to Z. Cardon, L. Lewis, and H. Frank. The study has been supported by a Tyrolean Science Fund Project AP 717029 to A.H.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Holzinger.

Additional information

Handling Editor: Friedrich W. Bentrup

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, F., Lewis, L.A., Wastian, J. et al. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma 249, 789–804 (2012). https://doi.org/10.1007/s00709-011-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0324-z

Keywords

Navigation