Skip to main content
Log in

Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In this article, we describe the modifications in the antioxidant system of Synechococcus elongatus PCC7942 mutant Mu2 capable of growing at five times higher concentration of bentazone than wild type. Nevertheless, in both the strains, bentazone almost identically induced light-dependent H2O2 production and its extracellular release. However unlike the wild type, peroxide produced upon prolong bentazone incubation was immediately degraded in Mu2. Consequently, the lipid peroxidation activity was also kept low. With prolong incubation of bentazone the mutant displayed a steady increase in glutathione peroxidase–reductase enzyme activities and reduced glutathione content, respectively, by 60% and 130%, favoring an efficient detoxification of bentazone-produced H2O2. Catalase–peroxidase and glutathione S-transferase, though present, remained ineffective in rendering bentazone tolerance. In-gel assays of glutathione S-transferase and glutathione reductase revealed presence of between four and five oligomeric states with mobility shifts. One oligomeric form each enzyme in wild-type strain disappeared upon bentazone treatment. Upon two-dimensional electrophoresis and MALDI-TOF/TOF, a bacterioferritin comigratory protein (peroxiredoxin Q) was found to be already highly expressed in Mu2; whereas in wild type, its level increased only upon bentazone exposure. The bcp transcript pool in WT was relatively low but increased with bentazone, whereas Mu2 exhibited high bcp mRNA even without herbicide. Bacterioferritin comigratory protein and glutathione peroxidase–reductase appear to be responsible for detoxification of bentazone-derived peroxide in Mu2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Al-Mendoufi O, Ashton FM (1984) Bentazon influence on selected metabolic processes of isolated bean leaf cells. J Plant Growth Regul 3:121–126

    Article  CAS  Google Scholar 

  • Bagchi SN, Pistorius EK, Michel K-P (2003) A Synechococcus sp. PCC7942 mutant with a higher tolerance towards bentazone. Photosynth Res 75:171–182

    Article  PubMed  CAS  Google Scholar 

  • Bagchi SN, Bitz T, Pistorius EK, Michel K-P (2007) A Synechococcus elongatus PCC7942 mutant with a higher tolerance toward the herbicide bentazone also confers resistance to sodium chloride stress. Photosynth Res 92:87–101

    Article  PubMed  CAS  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Ara A, Rai LC (2006) Preliminary analysis of cuprome of Anabaena doliolum using two-dimensional gel electrophoresis. Curr Sci 91:1520–1523

    CAS  Google Scholar 

  • Cha E-Y, Park JS, Jeon S, Kong JS, Choi YK, Ryu J-Y, Park Y-II, Park YS (2005) Functional characterization of the gene encoding UDP-glucose: tetrahydrobiopterin α-glucosyltransferase in Synechococcus sp. PCC7942. J Microbiol 43:191–195

    PubMed  CAS  Google Scholar 

  • Das PK, Bagchi SN (2010) Bentazone and bromoxynil induce H+ and H2O2 accumulation, and inhibit photosynthetic O2 evolution in Synechococcus elongatus PCC7942. Pestic Biochem Physiol 97:256–261

    Article  CAS  Google Scholar 

  • Galhano V, Peixoto F, Gomes-Laranjo J, Fernández-Valiente E (2009) Differential effects of bentazon and molinate on Anabaena cylindrica, an autochthonous cyanobacterium of Portuguese ricefield agro-ecosystems. Water Air Soil Pollut 197:211–222

    Article  CAS  Google Scholar 

  • Galhano V, Peixoto F, Gomes-Laranjo J (2010a) Bentazon triggers the promotion of oxidative damage in the Portuguese ricefield cyanobacterium Anabaena cylindrica: response of the antioxidant system. Environ Toxicol 25:517–526

    Article  PubMed  CAS  Google Scholar 

  • Galhano V, Peixoto F, Gomes-Laranjo J, Fernández-Valiente E (2010b) Comparative toxicity of bentazon and molinate on growth, photosynthetic pigments, photosynthesis, and respiration of the Portuguese ricefield cyanobacterium Nostoc muscorum. Environ Toxicol 25:147–156

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinyl pyridone. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases.The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physical function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  Google Scholar 

  • Han Y-C, Wang C-Y (2002) Physiological basis of bentazon tolerance in rice (Oryza sativa L.) lines. Weed Biol Manag 2:186–193

    Article  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235

    Article  PubMed  CAS  Google Scholar 

  • Hirsch P, Overrein L, Alexander M (1961) Formation of nitrite and nitrate by actinomycetes and fungi. J Bacteriol 82:442–448

    PubMed  CAS  Google Scholar 

  • Hong Y, Hu H-Y, Xie X, Sakoda A, Sagehashi M, Li F-M (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aqua Toxicol 91:262–269

    Article  CAS  Google Scholar 

  • Hopkins J, Tudhope GR (1973) Glutathione peroxidase in human red cells in health and diseases. Br J Haematol 25:563–575

    Article  PubMed  CAS  Google Scholar 

  • Hourmant A, Amara A, Pouline P, Durand G, Arzul G, Quiniou F (2009) Effect of bentazon on growth and physiological responses of marine diatom: Chaetoceros gracilis. Toxicol Mech Meth 19:109–115

    Article  CAS  Google Scholar 

  • Kang KS, Lim CJ, Han TJ, Kim JC, Jin CD (1999) Changes in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves of Arabidopsis thaliana. J Plant Biol 42:187–193

    Article  CAS  Google Scholar 

  • Kang G-Y, Park E-H, Kim K, Lim C-J (2009) Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J Microbiol 47:60–67

    Article  PubMed  CAS  Google Scholar 

  • Koksharova OA, Klint J, Rasmussen U (2006) The first protein map of Synechococcus sp. strain PCC7942. Mikrobiologiia 75:765–774

    PubMed  CAS  Google Scholar 

  • Koksharova OA, Klint J, Rasmussen U (2007) Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC7942. Microbiol 153:2505–2517

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  PubMed  CAS  Google Scholar 

  • Kumari N, Narayan OP, Rai LC (2009) Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches. Chemosphere 77:1501–1507

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tongetti VB, Issakidis-Bourgnet E, Kandlbinder A, Weis E, Miginac-Maslow M, Dietz K-J (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Shin HW (2003) Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15:13–19

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Macedo RS, Lombardi AT, Omachi CY, Rörig LR (2008) Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. Toxicol Vitro 22:716–722

    Article  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Michel KP, Krüger F, Pühler A, Pistorius EK (1999) Molecular characterization of idiA and adjacent genes in the cyanobacteria Synechococcus sp. strains PCC6301 and PCC7942. Microbiol 145:1473–1484

    Article  CAS  Google Scholar 

  • Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996) Herbicidal activity and site of action of the natural product sorgoleone. Pestic Biochem Physiol 54:73–83

    Article  CAS  Google Scholar 

  • Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol 94:68–72

    Article  CAS  Google Scholar 

  • Perschke H, Broda E (1961) Determination of very small amounts of hydrogen peroxide. Nature 190:257–258

    Article  CAS  Google Scholar 

  • Petersson UA, Kieselbach T, García-Cerdán JG, Schröder WP (2006) The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett 580:6055–6061

    Article  PubMed  CAS  Google Scholar 

  • Pinto FL, Thapper A, Sontheim W, Lindblad P (2009) Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 10:79–86

    Article  PubMed  Google Scholar 

  • Ray S, Bagchi SN (2001) Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–460

    Article  CAS  Google Scholar 

  • Ricci G, Bello ML, Caccuri AM, Galiazzo F, Federici G (1984) Detection of glutathione transferase activity on polyacrylamide gels. Anal Biochem 143:226–230

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosytem II. Trends Biochem Sci 26:648–653

    Article  PubMed  CAS  Google Scholar 

  • Stork T, Michel K-P, Pistorius EK, Deitz K-J (2005) Bioinformatic analysis of the genomes of the cyanobacteria Synechocystis sp. PCC6803 and Synechococcus elongatus PCC7942 for the presence of peroxiredoxins and their transcript regulation under stress. J Exp Bot 56:3193–3206

    Article  PubMed  CAS  Google Scholar 

  • Stork T, Laxa M, Dietz MS, Dietz K-J (2009) Functional characterisation of the peroxiredoxin gene family members of Synechococcus elongatus PCC7942. Arch Microbiol 191:141–151

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BN, Bhatt I, Dietz K-J (2009) Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235:3–15

    Article  PubMed  CAS  Google Scholar 

  • Vassilakaki M, Pflugmacher S (2008) Oxidative stress response of Synechocystis sp. (PCC6803) due to exposure to microcystin-LR and cell-free cyanobacterial crude extract containing microcystin-LR. J Appl Phycol 20:219–225

    Article  CAS  Google Scholar 

  • Yun-Sheng W, Xu-Zhong L, Ming-Na S, Feng-Shun S, Li L, Tong-Chun G, Jian-Bo Y (2008) Physiological research on the difference of bentazon tolerance in wild type rice and sensitive lethal mutants. Acta Agro Sin 34:1615–1622

    Google Scholar 

  • Zhu J, Patzoldt WL, Radwan O, Tranel PJ, Clough SJ (2009) Effects of photosystem-II- interfering herbicides atrazine and bentazon on the soybean transcriptome. Plant Gen 2:191–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Head, Dept. Biological Sciences, R. D. University, Jabalpur (India) for laboratory facilities and the Department of Science & Technology (Govt. of India), New Delhi for financial assistance vide project no SR/SO/PS-28/06.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvendra Nath Bagchi.

Additional information

Handling Editor: Friedrich W. Bentrup

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1,879 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, P.K., Bagchi, S.N. Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. Protoplasma 249, 65–74 (2012). https://doi.org/10.1007/s00709-011-0262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0262-9

Keywords

Navigation