Skip to main content
Log in

Plasmodesmata viewed as specialised membrane adhesion sites

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

A significant amount of work has been expended to identify the elusive components of plasmodesmata (PD) to help understand their structure, as well as how proteins are targeted to them. This review focuses on the role that lipid membranes may play in defining PD both structurally and as subcellular targeting addresses. Parallels are drawn to findings in other areas of research which focus on the lateral segregation of membrane domains and the generation of three-dimensional organellar shapes from flat lipid bilayers. We conclude that consideration of the protein–lipid interactions in cell biological studies of PD components and PD-targeted proteins may yield new insights into some of the many open questions regarding these unique structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DRM:

Detergent resistant membrane

DT:

Desmotubule

EM:

Electron microscopy

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

GPI:

Glycosyl phosphatidyl inositol

Ld :

Liquid-disordered

Lo :

Liquid-ordered

MP:

Movement protein

PD:

Plasmodesma(ta)

PDLP:

Plasmodesmata-located protein

PDCB:

Pd callose binding protein

PIP:

Phosphatidylinositol phosphate

PMTV:

Potato mop-top virus

PVX:

Potato virus X

So :

Solid-ordered

TMD:

Transmembrane domain

TMV:

Tobacco mosaic virus

References

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas CL, Heinlein M, Mély Y, Maule AJ, Ritzenthaler C (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog. doi:10.1371/journal.ppat.1001119

    PubMed  Google Scholar 

  • Ambroggio E, Sorre B, Bassereau P, Goud B, Manneville JB, Antonny B (2010) ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J 29:292–303

    Article  CAS  PubMed  Google Scholar 

  • Andersson MX, Goksör M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282:1170–1174

    Article  CAS  PubMed  Google Scholar 

  • Auth T, Gov NS (2009) Diffusion in a fluid membrane with a flexible cortical cytoskeleton. Biophys J 96:818–830

    Article  CAS  PubMed  Google Scholar 

  • Avisar D, Prokhnevsky AI, Dolja VV (2008) Class VIII myosins are required for plasmodesmatal localization of a closterovirus Hsp70 homolog. J Virol 82:2836–2843

    Article  CAS  PubMed  Google Scholar 

  • Avisar D, bu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709

    Article  CAS  PubMed  Google Scholar 

  • Backues SK, Konopka CA, McMichael CM, Bednarek SY (2007) Bridging the divide between cytokinesis and cell expansion. Curr Opin Plant Biol 10:607–615

    Article  CAS  PubMed  Google Scholar 

  • Badelt K, White RG, Overall RL, Vesk M (1994) Ultrastructural specializations in the cell wall sleeve around plasmodesmata. Am J Bot 81:1422–1427

    Article  Google Scholar 

  • Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. J Lipid Res 49:378–389

    Article  CAS  Google Scholar 

  • Baluska F, Samaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    Article  CAS  PubMed  Google Scholar 

  • Baluska F, Cvrcková F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Article  CAS  PubMed  Google Scholar 

  • Bariola P, Retelska D, Stasiak A, Kammerer R, Fleming A, Hijri M, Frank S, Farmer E (2004) Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Mol Biol 55:579–594

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Pelkmans L (2006) A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett 580:5559–5564

    Article  CAS  PubMed  Google Scholar 

  • Bednarek SY, Falbel TG (2002) Membrane trafficking during plant cytokinesis. Traffic 3:621–629

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Panstruga R (2005) Lipid rafts in plants. Planta 223:5–19

    Article  CAS  PubMed  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalisation of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    Article  CAS  Google Scholar 

  • Blackman LM, Overall RL (2001) Structure and function of plasmodesmata. Aust J Plant Physiol 28:709–727

    CAS  Google Scholar 

  • Blackman LM, Harper JDI, Overall RL (1999) Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol 78:297–304

    CAS  PubMed  Google Scholar 

  • Boevink P, Oparka KJ, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  • Borner GHH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, MacAskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti C, Murillo I, Fontanet P, Coca M, San Segundo B (2005) Long-distance transport of the maize pathogenesis-related PRms protein through the phloem in transgenic tobacco plants. Plant Sci 168:813–821

    Article  CAS  Google Scholar 

  • Botha CEJ, Cross RHM (2000) Towards reconciliation of structure with function in plasmodesmata—who is the gatekeeper? Micron 31:713–721

    Article  CAS  PubMed  Google Scholar 

  • Botha CEJ, Hartley BJ, Cross RHM (1993) The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the kranz mesophyll-bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally fixed blades. Ann Bot 72:255–261

    Article  Google Scholar 

  • Boutant E, Didier P, Niehl A, Mély Y, Ritzenthaler C, Heinlein M (2010) Fluorescent protein recruitment assay for demonstration and analysis of in vivo protein interactions in plant cells and its application to Tobacco mosaic virus movement protein. Plant J 62:171–177

    Article  CAS  PubMed  Google Scholar 

  • Brandizzi F, Frangne N, Marc-Martin S, Hawes C, Neuhaus JM, Paris M (2002) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14:1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Brill LM, Nunn RS, Kahn TW, Yeager M, Beachy RN (2000) Recombinant tobacco mosaic virus movement protein is an RNA-binding, α-helical membrane protein. Proc Natl Acad Sci USA 97:7112–7117

    Article  CAS  PubMed  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  CAS  PubMed  Google Scholar 

  • Chen M-H, Tian G-W, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    Article  CAS  PubMed  Google Scholar 

  • Chernomordik LV, Zimmerberg J, Kozlov MM (2006) Membranes of the world unite! J Cell Biol 175:201–207

    Article  CAS  PubMed  Google Scholar 

  • Ciczora Y, Callens N, Penin F, Pecheur EI, Dubuisson J (2007) Transmembrane domains of hepatitis C virus envelope glycoproteins: residues involved in E1E2 heterodimerization and involvement of these domains in virus entry. J Virol 81:2372–2381

    Article  CAS  PubMed  Google Scholar 

  • Cook ME, Graham LE, Botha CEJ, Lavin CA (1997) Comparative ultrastructure of plasmodesmata of Chara and selective bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. Am J Bot 84:1169–1178

    Article  Google Scholar 

  • Cory GOC, Cullen P (2007) Membrane curvature: the power of bananas, zeppelins and boomerangs. 17:R455–R457

  • Cowan GH, Lioliopoulou F, Ziegler A, Torrance L (2002) Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298:106–115

    Article  CAS  PubMed  Google Scholar 

  • Craig S, Staehelin LA (1988) High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur J Cell Biol 46:81–93

    CAS  PubMed  Google Scholar 

  • Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  CAS  PubMed  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP, Volokita M, Solomon M, Fritz U, Delphendahl W, Herth W (1993) A monoclonal antibody recognizs a 65 kDa higher plant membrane polypeptide which undergoes cation dependent association with callose synthase in vitro and colocalizes with sites of high callose deposition in vivo. Protoplasma 176:33–42

    Article  CAS  Google Scholar 

  • Diener AC, Li HX, Zhou WX, Whoriskey WJ, Nes WD, Fink GR (2000) STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell 12:853–870

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Article  Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Article  Google Scholar 

  • Dorokhov YL, Mäkinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Ann Rev Biochem 78:515–540

    Article  CAS  PubMed  Google Scholar 

  • Downes CP, Gray A, Lucocq JM (2005) Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol 15:259–268

    Article  CAS  PubMed  Google Scholar 

  • Drin G, Antonny B (2010) Amphipathic helices and membrane curvature. FEBS Lett 584:1840–1847

    Article  CAS  PubMed  Google Scholar 

  • Drin G, Morello V, Casella JF, Gounon P, Antonny B (2008) Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320:670–673

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, Kollmann R (1996) Formation of branched plasmodesmata in regenerating Solanum nigrum protoplasts. Planta 199:126–138

    CAS  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin and functioning. Protoplasma 216:1–30

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, Schulz M, Kollmann R (1996) Subcellular localization of ubiquitin in plant protoplasts and the function of ubiquitin in selective degradation of outer-wall plasmodesmata in regenerating protoplasts. Planta 199:139–151

    CAS  Google Scholar 

  • English AR, Zurek N, Voeltz GK (2009) Peripheral ER structure and function. Curr Opin Cell Biol 21:596–602

    Article  CAS  PubMed  Google Scholar 

  • Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host β-1, 3-glucanases. Sem Cell Dev Biol 20:1074–1081

    Article  CAS  Google Scholar 

  • Escobar NM, Haupt S, Thow G, Boevink P, Chapman S, Oparka KJ (2003) High-throughput viral expression of cdna-green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata. Plant Cell 15:1507–1523

    Article  CAS  PubMed  Google Scholar 

  • Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50:S311–S316

    Article  PubMed  CAS  Google Scholar 

  • Farsad K, De Camilli PD (2003) Mechanisms of membrane deformation. Curr Opin Cell Biol 15:372–381

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518

    Article  CAS  PubMed  Google Scholar 

  • Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL (2009) Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 88:357–369

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Men S, Grebe M (2004) Lipid function in plant cell polarity. Curr Opin Plant Biol 7:670–676

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbon J, Bell K, King E, Oparka K (2010) Super-resolution imaging of plasmodesmata using 3D-structured illumination microscopy (3D-SIM). Plant Physiol. doi:10.1104/pp.110.157941

    PubMed  Google Scholar 

  • Fleurat-Lessard P, Bouché-Pillon S, Leloup C, Lucas WJ, Serrano R, Bonnemain J-L (1995) Absence of plasma membrane H+-ATPase in plasmodesmata located in pit-fields of the young reactive pulvinus of Mimosa pudica L. Protoplasma 188:180–185

    Article  CAS  Google Scholar 

  • Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Gadjev IZ, Hille J (2004) An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell Mol Life Sci 61:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Ferwerda MA, Mehterov N, Laloi C, Qureshi MK, Hille J (2008) Arabidopsis AAL-toxin-resistant mutant atr1 shows enhanced tolerance to programmed cell death induced by reactive oxygen species. Biochem Biophys Res Commun 375:639–644

    Article  CAS  PubMed  Google Scholar 

  • Glockmann C, Kollmann R (1996) Structure and development of cell connections in the phloem of Metasequoia glyptostroboides needles I. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193:191–203

    Article  Google Scholar 

  • Goetz JG, Genty H, St-Pierre P, Dang T, Joshi B, Sauve R, Vogl W, Nabi IR (2007) Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. J Cell Sci 120:3553–3564

    Article  CAS  PubMed  Google Scholar 

  • Golomb L, bu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  CAS  Google Scholar 

  • Grabski S, de Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5:25–38

    Article  CAS  PubMed  Google Scholar 

  • Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating tmv spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microb Interact 21:335–345

    Article  CAS  Google Scholar 

  • Gupton SL, Collings DA, Allen NS (2002) Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division. Plant Physiol Biochem 44:95–105

    Article  CAS  Google Scholar 

  • Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462

    Article  CAS  PubMed  Google Scholar 

  • Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:177–186

    Article  CAS  PubMed  Google Scholar 

  • Hanzal-Bayer MF, Hancock JF (2007) Lipid rafts and membrane traffic. FEBS Lett 581:2098–2104

    Article  CAS  PubMed  Google Scholar 

  • Haucke V, Di Paolo G (2007) Lipids and lipid modifications in the regulation of membrane traffic. Curr Opin Cell Biol 19:426–435

    Article  CAS  PubMed  Google Scholar 

  • Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    Article  CAS  PubMed  Google Scholar 

  • Hawes CR, Juniper BE, Horne JC (1981) Low and high voltage electron microscopy of mitosis and cytokinesis in maize roots. Planta 152:397–407

    Article  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    Article  CAS  PubMed  Google Scholar 

  • Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133

    Article  Google Scholar 

  • Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl L (1990) Cortical endoplasmic reticulum in plants. J Cell Sci 96:355–373

    CAS  Google Scholar 

  • Herrmann C, Wary J, Travers F, Barman T (1992) Effect of 2, 3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31:12227–12232

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Holthuis JCM, Levine TP (2005) Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 6:209–220

    Article  CAS  PubMed  Google Scholar 

  • Hölttä-Vuori M, Uronen R-L, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R, Ikonen E (2008) BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9:1839–1849

    Article  PubMed  CAS  Google Scholar 

  • Howard AR, Heppler ML, Ju HJ, Krishnamurthy K, Payton ME, Verchot-Lubicz J (2004) Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328:185–197

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA (2008) Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin-like gtpases involved in the generation of the tubular er network. Cell 138:549–561

    Article  CAS  PubMed  Google Scholar 

  • Huang B (2010) Super-resolution optical microscopy: multiple choices. Curr Opin Chem Biol 14:10–14

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH, Meyer T (2001) Subcellular targeting by membrane lipids. Curr Opin Cell Biol 13:146–152

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Takenawa T (2009) Mechanisms of membrane deformation by lipid-binding domains. Prog Lipid Res 48:298–305

    Article  CAS  PubMed  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  • Janmey PA, Kinnunen PKJ (2006) Biophysical properties of lipids and dynamic membranes. Trends Cell Biol 16:538–546

    Article  CAS  PubMed  Google Scholar 

  • Ju HJ, Samuels TD, Wang Y-S, Blancaflor E, Payton M, Mitra R, Krishnamurty K, Nelson RS, Verchot-Lubicz J (2005) The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895

    Article  CAS  PubMed  Google Scholar 

  • Kierszniowska S, Seiwert B, Schulze WX (2009) Definition of Arabidopsis sterol-rich membrane microdomains by differential treatment with methyl-β-cyclodextrin and quantitative proteomics. Mol Cell Proteomics 8:612–623

    Article  CAS  PubMed  Google Scholar 

  • Klopfenstein DR, Klumperman J, Lustig A, Kammerer RA, Oorschot V, Hauri H-P (2001) Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal-helical segment. J Cell Biol 153:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Knight A, Kendrick-Jones J (1993) A myosin-like protein from a higher plant. J Mol Biol 231:148–154

    Article  CAS  PubMed  Google Scholar 

  • Kollmann R, Glockmann C (1991) Studies on graft unions III: on the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71-85

    Article  Google Scholar 

  • Krishnamurty K, Mitra R, Payton ME, Verchot-Lubicz J (2002) Cell-to-cell movement of the PVX 12 k, 8 k, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25 k protein. Virology 300:269–281

    Article  CAS  Google Scholar 

  • Krishnamurty K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS, Verchot-Lubicz J (2003) The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:269–281

    Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300

    Article  PubMed  Google Scholar 

  • Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta Mol Cell Res 1746:234–251

    Article  CAS  Google Scholar 

  • Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki H, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  PubMed  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472

    Article  CAS  PubMed  Google Scholar 

  • Lalonde S, Weise A, Walsh RP, Ward JM, Frommer WB (2003) Fusion to GFP blocks intercellular trafficking of the sucrose transporter SUT1 leading to accumulation in companion cells. BMC Plant Biol 3:8

    Article  PubMed  Google Scholar 

  • Lee J-Y, Taoka K-I, Yoo B-C, Ben-Nissan G, Kim D-J, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell autonomous proteins. Plant Cell 17:2817–2831

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2010a) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584:2022–2027

    Article  CAS  PubMed  Google Scholar 

  • Lee S-C, Wu C-H, Wang C-W (2010b) Traffic of a viral movement protein complex to the highly curved tubules of the cortical endoplasmic reticulum. Traffic 11:912–930

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci USA 107:2343–2348

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, Engelman DM (1992) Glycophorin a dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 267:7683-7689

    CAS  PubMed  Google Scholar 

  • Levine T, Rabouille C (2005) Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 17:362–368

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel B (2007) A plasmodesmata-associated β-1, 3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Nebenführ A (2007) Organelle targeting of myosin XI is mediated by two globular tail subdomains with separate cargo binding sites. J Biol Chem 282:20593–20602

    Article  CAS  PubMed  Google Scholar 

  • Li J-F, Nebenführ A (2008) The tail that wags the dog: the globular tail domain defines the function of myosin V/XI. Traffic 9:290–298

    Article  CAS  PubMed  Google Scholar 

  • Li X-D, Jung HS, Mabuchi K, Craig R, Ikebe M (2006) The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J Biol Chem 281:21789–21798

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D, Goñi FM, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30:430–436

    Article  CAS  PubMed  Google Scholar 

  • Lichtscheidl IK, Lancelle SA, Hepler PK (1990) Actin-endoplasmic reticulum complexes in Drosera. Their structural relationship with plasmalemma, nucleus, and organelles in cells prepared by high pressure freezing. Protoplasma 155:116–126

    Article  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA (2006) Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442:208–211

    CAS  PubMed  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral geneomes. Virology 344:169–184

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    Article  CAS  PubMed  Google Scholar 

  • Luedeke C, Frei SB, Sbalzarini I, Schwarz H, Spang A, Barral Y (2005) Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J Cell Biol 169:897–908

    Article  CAS  PubMed  Google Scholar 

  • Martens HJ, Roberts AG, Oparka KJ, Schulz A (2006) Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching. Plant Physiol 142:471–480

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Gil L, Sanchez-Navarro JA, Cruz A, Pallas V, Perez-Gil J, Mingarro I (2009) Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein. J Virol 83:5535–5543

    Article  PubMed  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686

    Article  CAS  PubMed  Google Scholar 

  • Melcher U (2000) The ‘30 K’ superfamily of viral movement proteins. J Gen Virol 81:257–266

    CAS  PubMed  Google Scholar 

  • Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB (2010) A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci USA 107:3900–3905

    Article  CAS  PubMed  Google Scholar 

  • Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein–protein interactions. Plant J 53:597–609

    Article  CAS  PubMed  Google Scholar 

  • Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088

    Article  CAS  PubMed  Google Scholar 

  • Mongrand S, Morel J, Laroche J, Claverol S, Carde J, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells—purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  CAS  PubMed  Google Scholar 

  • Moore PJ, Fenczik CA, Deom CM, Beachy RN (1992) Developmental changes in plasmodesmata in transgenic tobacco expressing the movement protein of tobacco mosaic virus. Protoplasma 170:115–127

    Article  Google Scholar 

  • Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen OG (2010) The liquid-ordered state comes of age. Biochim Biophys Acta 1798:1286–1288

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling: “in a nutshell”. J Lipid Res 50:S260–S265

    Article  PubMed  CAS  Google Scholar 

  • Murillo I, Cavallarin L, San Segundo B (1997) The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles. Plant Cell 9:145–156

    Article  CAS  PubMed  Google Scholar 

  • Nziengui H, Bouhidel K, Pillon D, Der C, Marty F, Schoefs B (2007) Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS Lett 581:3356–3362

    Article  CAS  PubMed  Google Scholar 

  • Oparka K (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739–750

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Prior DAM, Crawford JW (1994) Behavior of plasma-membrane, cortical ER and plasmodesmata during plasmolysis of onion epidermal-cells. Plant Cell Environ 17:163–171

    Article  Google Scholar 

  • Oparka KJ, Prior DA, Santa Cruz S, Padgett HS, Beachy RN (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J 12:781–789

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts IM, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel BL (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  CAS  PubMed  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macro-molecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Overall RL, Wolfe J, Gunning BES (1982) Intercellular communication in Azolla roots: I. Ultrastructure of plasmodesmata. Protoplasma 111:134–150

    Article  Google Scholar 

  • Park SH, Blackstone C (2010) Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep 11:515–521

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724-738

    Article  CAS  PubMed  Google Scholar 

  • Perinetti G, Müller T, Spaar A, Polishchuk R, Luini A, Egner A (2009) Correlation of 4Pi and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10:379–391

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:S323–S328

    Article  PubMed  CAS  Google Scholar 

  • Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentova O, Novotna Z, Zárský V (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

    Article  CAS  PubMed  Google Scholar 

  • Praefcke GJK, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  PubMed  Google Scholar 

  • Prekeris R, Gould GW (2008) Breaking up is hard to do—membrane traffic in cytokinesis. J Cell Sci 121:1569–1576

    Article  CAS  PubMed  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaitre B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21:1541–1555

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  • Reichel C, Beachy RN (1998) Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proc Natl Acad Sci USA 95113:11169–11174

    Article  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567

    Article  CAS  PubMed  Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplastic organisation during chilling-induced release from dormancy. Plant J 26:249–264

    Article  CAS  PubMed  Google Scholar 

  • Robards AW (1968a) A new interpretation of plasmodesmatal ultrastructure. Planta 82:200–210

    Article  Google Scholar 

  • Robards AW (1968b) Desmotubule—a plasmodesmatal substructure. Nature 218:784

    Article  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Robinson-Beers K, Evert RF (1991) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184:307–318

    Google Scholar 

  • Ronchi P, Colombo S, Francolini M, Borgese N (2008) Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J Cell Biol 181:105–118

    Article  CAS  PubMed  Google Scholar 

  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B (2005) Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Rutherford S, Moore I (2002) The arabidopsis rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    Article  CAS  PubMed  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell 17:1788–1800

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Wang F, Schmitz S, Xu Y, Xu Q, Molloy JE, Veigel C, Sellers JR (2003) Neck length and processivity of myosin V. J Biol Chem 278:29201–29207

    Article  CAS  PubMed  Google Scholar 

  • Samuels TD, Ju H-J, Ye C-M, Motes CM, Blancaflor EB, Verchot-Lubicz J (2007) Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 367:375–389

    Article  CAS  PubMed  Google Scholar 

  • Schepetilnikov MV, Manske U, Solovyev AG, Zamyatnin AA Jr, Schiemann J, Morozov SYu (2005) The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. J Gen Virol 86:2379–2391

    Article  CAS  PubMed  Google Scholar 

  • Schepetilnikov MV, Solovyev AG, Gorshkova EN, Schiemann J, Prokhnevsky AI, Dolja VV, Morozov SY (2008) Intracellular targeting of a hordeiviral membrane-spanning movement protein: sequence requirements and involvement of an unconventional mechanism. J Virol 82:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Schönknecht G, Brown JE, Verchot-Lubicz J (2008) Plasmodesmata transport of GFP alone or fused to potato virus X TGBp1 is diffusion driven. Protoplasma 232:143–152

    Article  PubMed  CAS  Google Scholar 

  • Schulz A (1995) Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root tips under osmotic stress. Protoplasma 188:22–37

    Article  Google Scholar 

  • Segui-Simarro JM, Austin JR II, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  CAS  PubMed  Google Scholar 

  • Senes A, Engel DE, De Grado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14:465–479

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Peskan-Berghofer T, Oelmuller R (2004) Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol Plant 122:397–403

    Article  CAS  Google Scholar 

  • Shibata Y, Voss C, Rist JM, Hu J, Rapoport TA, Prinz WA, Voeltz GK (2008) The reticulon and Dp1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J Biol Chem 283:18892–18904

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Hu J, Kozlov MM, Rapoport TA (2009) Mechanisms shaping the membranes of cellular organelles. Ann Rev Cell Dev Biol 25:329–354

    Article  CAS  Google Scholar 

  • Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    Article  CAS  PubMed  Google Scholar 

  • Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard PA (2002) Functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225

    Article  CAS  PubMed  Google Scholar 

  • Solovyev AG, Stroganova TA, Zamyatnin AA, Fedorkin ON, Schiemann J, Morozov SY (2000) Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269:113–127

    Article  CAS  PubMed  Google Scholar 

  • Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF, Prost J, Goud B, Bassereau P (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci USA 106:5622–5626

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA (2010) Motoring around the plant cell: insights from plant myosins. Biochem Soc Trans 38:833–838

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Frigerio L, Tolley N, Hawes C (2009a) The plant endoplasmic reticulum: a cell-wide web. Biochem J 423:145–155

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Ketelaar T, de Ruijter NCA, Hawes C (2009b) Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10:567–571

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Hawes C, Griffing L (2009c) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Tolley N, Aller I, Svozil J, Osterrieder A, Botchway S, Mueller C, Frigerio L, Hawes C (2010) Five arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. Plant Cell 22:1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Sprong H, van der Sluijs P, van Meer G (2001) How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2:504–513

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  CAS  PubMed  Google Scholar 

  • Stahelin RV (2009) Lipid binding domains: more than simple lipid effectors. J Lipid Res 50:S299–S304

    Article  PubMed  CAS  Google Scholar 

  • Stöckl MT, Herrmann A (2010) Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim Biophys Acta 1798:1444–1456

    Article  PubMed  CAS  Google Scholar 

  • Su S, Liu Z, Chen C, Zhang Y, Wang X, Zhu L, Miao L, Wang XC, Yuan M (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373–1387

    Article  CAS  PubMed  Google Scholar 

  • Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27:2817–2828

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  CAS  PubMed  Google Scholar 

  • Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11:620–631

    Article  CAS  PubMed  Google Scholar 

  • Thomas CL, Bayer E, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Olsen L, Sun B, Lid SE, Brown RC, Lemmon BE, Fosnes K, Gruis D, Opsahl-Sorteberg HG, Otegui MS, Olsen OA (2007) Subcellular localization and functional domain studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 19:3127–3145

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    Article  CAS  PubMed  Google Scholar 

  • Tilsner J, Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov E, Torrance L (2010) Plasmodesmal targeting and intercellular movement of potato mop-top pomovirus is mediated by a membrane anchored tyrosine-based motif on the lumenal side of the endoplasmic reticulum and the C-terminal transmembrane domain in the TGB3 movement protein. Virology 402:41–51

    Article  CAS  PubMed  Google Scholar 

  • Tolley N, Sparkes IA, Hunter PR, Craddock CP, Nuttall J, Roberts LM, Hawes C, Pedrazzini E, Frigerio L (2010) Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport. Traffic 8:94–102

    Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30 K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160:363–371

    Article  CAS  PubMed  Google Scholar 

  • Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root tips: structure and composition. J Cell Sci 107:3351–3361

    CAS  PubMed  Google Scholar 

  • Vale RD (2003) Myosin V motor proteins. J Cell Biol 163:445–450

    Article  CAS  PubMed  Google Scholar 

  • Van Damme D, Bouget F-Y, Van Poucke K, Inzé D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen W, Vermeer JEM, Gadella TWJ Jr, Munnik T (2007) Visualization of phosphatidylinositol 4, 5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–1026

    Article  PubMed  CAS  Google Scholar 

  • van Meer G, Sprong H (2004) Membrane lipids and vesicular traffic. Curr Opin Cell Biol 16:373–378

    Article  PubMed  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  CAS  Google Scholar 

  • Vedrenne C, Hauri HP (2006) Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 7:639–646

    Article  CAS  PubMed  Google Scholar 

  • Vermeer JEM, van Leeuwen W, Tobeña-Santamaria R, Laxalt AM, Jones DR, Divecha N, Gadella TWJ Jr, Munnik T (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J 47:687–700

    Article  CAS  PubMed  Google Scholar 

  • Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ Jr (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–372

    Article  CAS  PubMed  Google Scholar 

  • Voeltz GK, Prinz WA (2007) Sheets, ribbons and tubules—how organelles get their shape. Nat Rev Mol Cell Biol 8:258–264

    Article  CAS  PubMed  Google Scholar 

  • Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124:573–586

    Article  CAS  PubMed  Google Scholar 

  • Volkmann D, Mori T, Tirlapur UK, Konig K, Fujiwara T, Kendrick-Jones J, Baluska F (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata/pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (2006) Membrane–protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  CAS  Google Scholar 

  • Waigmann E, Turner A, Peart J, Roberts K, Zambryski P (1997) Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta 203:75–84

    CAS  PubMed  Google Scholar 

  • Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–3179

    Article  CAS  PubMed  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  CAS  PubMed  Google Scholar 

  • Wright KM, Oparka KJ (2006) The ER within plasmodesmata. In: Robinson DG (ed) The plant endoplasmic reticulum. Springer, Berlin, pp 279–308

    Chapter  Google Scholar 

  • Xue H, Chen X, Mei Y (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421:145–156

    Article  CAS  PubMed  Google Scholar 

  • Yahalom A, Warmbrodt RD, Laird DW, Traub O, Revel J-P, Willecke K, Epel BL (1991) Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies. Plant Cell 3:407–417

    Article  CAS  PubMed  Google Scholar 

  • Yahalom A, Lando R, Katz A, Epel BL (1998) A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J Plant Physiol 153:354–362

    CAS  Google Scholar 

  • Zavaliev R, Sagi G, Gera A, Epel BL (2010) The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J Exp Bot 61:131–142

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, McCormick S (2010) The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod 23:87–93

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Naber N, Cooke R (1995) Muscle cross-bridges bound to actin are disordered in the presence of 2, 3-butanedione monoxime. Biophys J 68:1980–1990

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Chris Hawes (Oxford, UK) for supplying Fig. 2a and to Christophe Ritzenthaler (Strasbourg, France), Christine Faulkner and Andy J. Maule (Norwich, UK) and Jesús A. Sánchez-Navarro (Valencia, Spain) for sharing unpublished results. We apologise to all colleagues whose work we were unable to cite due to space limitations. Funding by the Fundación Séneca, Spain (postdoctoral fellowship to K. Amari) and Scottish Government’s Rural and Environmental Research and Analysis Directorate (to SCRI) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Tilsner.

Additional information

Handling Editor: Karl Oparka

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilsner, J., Amari, K. & Torrance, L. Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248, 39–60 (2011). https://doi.org/10.1007/s00709-010-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0217-6

Keywords

Navigation