Skip to main content
Log in

Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Because cells are sensitive to mechanical forces, microgravity might act on stress-dependent cell changes. Regulation of focal adhesions (FAs) and cytoskeletal activity plays a role in cell maintenance, cell movement, and migration. Human MCF-7 cells were exposed to modeled microgravity (MMG) to test the hypothesis that migration responsiveness to microgravity is associated with cytoskeleton and FA anomalies. MMG acts on MCF-7 cells by disorganizing cytoskeleton filaments (microfilaments and microtubules). Microfilaments in MMG did not display their typical radial array. Likewise, microtubules were disrupted in MCF-7 cells within 4 h of initiation of MMG and were partly reestablished by 48 h. FAs generated in microgravity were less mature than those established in controls, shown by reduced FAs number and clustering. In parallel, MMG decreased kinases activity (such as FAK, PYK2, and ILK) of FAs in MCF-7 cells. The expression of both integrinβ1 and integrinβ4 were downregulated by MMG. We conclude that cytoskeletal alterations and FAs changes in MMG are concomitant with cell invasion and migration retardation. We suggest that reduced migration response in MCF-7 cells following MMG is linked to changes of cytoskeleton and FAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MMG:

Modeled microgravity

NG:

Normal gravity

FAs:

Focal adhesions

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

PYK2:

Proline-rich tyrosine kinase 2

ILK:

Integrin-linked kinase

VN:

Mean vinculin spot number per cell

VA:

Mean vinculin spot area

References

  • Akhmanova A, Hoogenraad CC (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17(1):47–54

    Article  PubMed  CAS  Google Scholar 

  • Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277(1):93–99

    Article  PubMed  CAS  Google Scholar 

  • Andressen C, Adrian S, Fassler R, Arnhold S, Addicks K (2005) The contribution of beta1 integrins to neuronal migration and differentiation depends on extracellular matrix molecules. Eur J Cell Biol 84(12):973–982

    Article  PubMed  CAS  Google Scholar 

  • Baldwin KM, Herrick RE, Ilyina-Kakueva E, Oganov VS (1990) Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle. Faseb J 4(1):79–83

    PubMed  CAS  Google Scholar 

  • Braide M, Ebrahimzadeh PR, Strid KG, Bjursten LM (1994) Migration of human granulocytes in filters: effects of gravity and movable gradients of f-MLP. Biorheology 31(6):617–630

    PubMed  CAS  Google Scholar 

  • Chen J, Chen R, Gao S (2007) Morphological characteristics and proliferation of keratocytes cultured under simulated microgravity. Artif Organs 31(9):722–731

    Article  PubMed  Google Scholar 

  • Chopra V, Fadl AA, Sha J, Chopra S, Galindo CL, Chopra AK (2006) Alterations in the virulence potential of enteric pathogens and bacterial–host cell interactions under simulated microgravity conditions. J Toxicol Environ Health A 69(14):1345–1370

    Article  PubMed  CAS  Google Scholar 

  • Cox EA, Huttenlocher A (1998) Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech 43(5):412–419

    Article  PubMed  CAS  Google Scholar 

  • Gershovich JG, Buravkova LB (2007) Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects. Bull Exp Biol Med 144(4):608–613

    Article  PubMed  CAS  Google Scholar 

  • Guignandon A, Lafage-Proust MH, Usson Y, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L (2001) Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. Faseb J 15(11):2036–2038

    PubMed  CAS  Google Scholar 

  • Guo H, Ma Y, Zhang B, Sun B, Niu R, Ying G, Zhang N (2009) Pivotal advance: PKC{zeta} is required for migration of macrophages. J Leukoc Biol 85(6):911–918

    Article  PubMed  CAS  Google Scholar 

  • Hatton JP, Gaubert F, Lewis ML, Darsel Y, Ohlmann P, Cazenave JP, Schmitt D (1999) The kinetics of translocation and cellular quantity of protein kinase C in human leukocytes are modified during spaceflight. Faseb J 13(Suppl):S23–S33

    PubMed  CAS  Google Scholar 

  • Haugh JM (2008) Biophysics: cells get in shape for a crawl. Nature 453(7194):461–462

    Article  PubMed  CAS  Google Scholar 

  • Higashibata A, Imamizo-Sato M, Seki M, Yamazaki T, Ishioka N (2006) Influence of simulated microgravity on the activation of the small GTPase Rho involved in cytoskeletal formation—molecular cloning and sequencing of bovine leukemia-associated guanine nucleotide exchange factor. BMC Biochem 7:19

    Article  PubMed  CAS  Google Scholar 

  • Hirasaka K, Nikawa T, Yuge L, Ishihara I, Higashibata A, Ishioka N, Okubo A, Miyashita T, Suzue N, Ogawa T, others (2005) Clinorotation prevents differentiation of rat myoblastic L6 cells in association with reduced NF-kappa B signaling. Biochim Biophys Acta 1743(1-2):130–140

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Tatsumi H, Sokabe M (2007) Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim Biophys Acta 1770(8):1115–1127

    PubMed  CAS  Google Scholar 

  • Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S (2002) Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res 39(6):465–476

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (1990) Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc Natl Acad Sci U S A 87(9):3579–3583

    Article  PubMed  CAS  Google Scholar 

  • Ingber D (1999) How cells (might) sense microgravity. Faseb J 13(Suppl):S3–S15

    PubMed  CAS  Google Scholar 

  • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3):163–179

    Article  PubMed  Google Scholar 

  • Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, Mogilner A, Theriot JA (2008) Mechanism of shape determination in motile cells. Nature 453(7194):475–480

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Bacabac RG, Veldhuijzen JP, Van Loon JJ (2003) Microgravity and bone cell mechanosensitivity. Adv Space Res 32(8):1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102(4):1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). Faseb J 12(11):1007–1018

    PubMed  CAS  Google Scholar 

  • Machesky LM, Hall A (1997) Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 138(4):913–926

    Article  PubMed  CAS  Google Scholar 

  • Macho L, Koska J, Ksinantova L, Vigas M, Noskov VB, Grigoriev AI, Kvetnansky R (2001) Plasma hormone levels in human subject during stress loads in microgravity and at readaptation to Earth's gravity. J Gravit Physiol 8(1):P131–P132

    PubMed  CAS  Google Scholar 

  • Mehta D, Rahman A, Malik AB (2001) Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J Biol Chem 276(25):22614–22620

    Article  PubMed  CAS  Google Scholar 

  • Meyers VE, Zayzafoon M, Gonda SR, Gathings WE, McDonald JM (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem 93(4):697–707

    Article  PubMed  CAS  Google Scholar 

  • Meyers VE, Zayzafoon M, Douglas JT, McDonald JM (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res 20(10):1858–1866

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM (1995) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131(3):791–805

    Article  PubMed  CAS  Google Scholar 

  • Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, Kano M, Kominami E, Nonaka I, Ogawa T, Adams GR, others (2004) Skeletal muscle gene expression in space-flown rats. Faseb J 18(3):522–524

    PubMed  CAS  Google Scholar 

  • Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci U S A 97(15):8364–8368

    Article  PubMed  CAS  Google Scholar 

  • Pellis NR, Goodwin TJ, Risin D, McIntyre BW, Pizzini RP, Cooper D, Baker TL, Spaulding GF (1997) Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim 33(5):398–405

    Article  PubMed  CAS  Google Scholar 

  • Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA, Romer LH, Chen CS (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174(2):277–288

    Article  PubMed  CAS  Google Scholar 

  • Pochec E, Litynska A, Bubka M, Amoresano A, Casbarra A (2006) Characterization of the oligosaccharide component of alpha3beta1 integrin from human bladder carcinoma cell line T24 and its role in adhesion and migration. Eur J Cell Biol 85(1):47–57

    Article  PubMed  CAS  Google Scholar 

  • Romanov Y, Kabaeva N, Buravkova L (2000) Simulated hypogravity stimulates cell spreading and wound healing in cultured human vascular endothelial cells. J Gravit Physiol 7(2):P77–P78

    PubMed  CAS  Google Scholar 

  • Romanov Iu A, Kabaeva NV, Buravkova LB (2001) Alterations in actin cytoskeleton and rate of reparation of human endothelium (the wound-healing model) under the condition of clinostatting. Aviakosm Ekolog Med 35(1):37–40

    PubMed  CAS  Google Scholar 

  • Rosner H, Fischer H (1996) In growth cones of rat cerebral neurons and human neuroblastoma cells, activation of protein kinase C causes a shift from filopodial to lamellipodial actin dynamics. Neurosci Lett 219(3):175–178

    Article  PubMed  CAS  Google Scholar 

  • Rosner H, Wassermann T, Moller W, Hanke W (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229(2–4):225–234

    Article  PubMed  CAS  Google Scholar 

  • Sastry SK, Horwitz AF (1996) Adhesion-growth factor interactions during differentiation: an integrated biological response. Dev Biol 180(2):455–467

    Article  PubMed  CAS  Google Scholar 

  • Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49(3–10):399–418

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Pommerenke H, Durr F, Nebe B, Rychly J (1998) Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem 273(9):5081–5085

    Article  PubMed  CAS  Google Scholar 

  • Schober M, Raghavan S, Nikolova M, Polak L, Pasolli HA, Beggs HE, Reichardt LF, Fuchs E (2007) Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol 176(5):667–680

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol Anim 38(2):118–122

    Article  PubMed  Google Scholar 

  • Ungar F, Geiger B, Ben-Ze'ev A (1986) Cell contact- and shape-dependent regulation of vinculin synthesis in cultured fibroblasts. Nature 319(6056):787–791

    Article  PubMed  CAS  Google Scholar 

  • Uva BM, Masini MA, Sturla M, Prato P, Passalacqua M, Giuliani M, Tagliafierro G, Strollo F (2002) Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934(2):132–139

    Article  PubMed  CAS  Google Scholar 

  • Vassy J, Portet S, Beil M, Millot G, Fauvel-Lafeve F, Karniguian A, Gasset G, Irinopoulou T, Calvo F, Rigaut JP, others (2001) The effect of weightlessness on cytoskeleton architecture and proliferation of human breast cancer cell line MCF-7. Faseb J 15(6):1104–1106

    PubMed  CAS  Google Scholar 

  • Vincent L, Avancena P, Cheng J, Rafii S, Rabbany SY (2005) Simulated microgravity impairs leukemic cell survival through altering VEGFR-2/VEGF-A signaling pathway. Ann Biomed Eng 33(10):1405–1410

    Article  PubMed  Google Scholar 

  • Von Andrian UH (2001) PKC-beta(I): the whole ignition system or just a sparkplug for T cell migration? Nat Immunol 2(6):477–478

    Article  CAS  Google Scholar 

  • Wang YC, Zhang S, Du TY, Wang B, Sun XQ (2009) Clinorotation upregulates inducible nitric oxide synthase by inhibiting AP-1 activation in human umbilical vein endothelial cells. J Cell Biochem 107:357–363

    Article  PubMed  CAS  Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(Pt 20):3583–3590

    PubMed  CAS  Google Scholar 

  • Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z (1999) Molecular diversity of cell-matrix adhesions. J Cell Sci 112(Pt 11):1655–1669

    PubMed  CAS  Google Scholar 

  • Zayzafoon M, Meyers VE, McDonald JM (2005) Microgravity: the immune response and bone. Immunol Rev 208:267–280

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, XSC, Li YH, Sun XQ, Wang B (2009) Simulated Microgravity suppress the mechanotransduction in MG-63 cells: Roles of integrins and ERK. J Bone Miner Res. In press

Download references

Acknowledgments

We would like to thank Dr. Bing Wang and Dr. Mingzhu Zhai for technical assistance. Confocal laser scanning microscopy was performed at the Department of Anatomy and K.K. Leung Brain Research Center, the Fourth Military Medical University (FMMU), PR China.

Conflict of interest

The authors declare that they have no conflict of interest. There is no financial or other relationship that might be perceived as leading to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongren Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhang, S., Chen, J. et al. Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. Protoplasma 238, 23–33 (2009). https://doi.org/10.1007/s00709-009-0068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0068-1

Keywords

Navigation