Skip to main content
Log in

Experimental characterization and mechanical modeling of additively manufactured TPU components of innovative seismic isolators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This work presents an experimental and mechanical study on the tensile response of 3D-printed thermoplastic polyurethane membranes, to be used as stretchable members of novel seismic isolators. The examined specimens have been 3D-printed by fused deposition modeling at the Rapid Prototyping Laboratory of the University of Salerno. Cyclic tests performed at different strain rates are employed to characterize the mechanical response of such members and the dependence of preconditioning effects on the recovery time and the initial pretension of the specimens. The presented results show a marked hysteretic response, the fast recovery of residual strains with time, and an appreciable increase of the tangent tensile modulus along the loading phase of the stress–strain curve with growing values of the applied strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasmi, S., Ginoux, G., Labbé, E., Alix, S.: Multi-physics properties of thermoplastic polyurethane at various fused filament fabrication parameters. Rapid Prototyp. J. 28(5), 895–906 (2022)

    Article  Google Scholar 

  2. Ali, M.M., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J., Atashbar, M.Z.: Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sens. Actuators, A 274, 109–115 (2018)

    Article  Google Scholar 

  3. Kim, K., Park, J., Suh, J.H., Kim, M., Jeong, Y., Park, I.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 263, 493–500 (2017)

    Article  Google Scholar 

  4. Joshi, M., Adak, B., Butola, B.S.: Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog. Mater Sci. 97, 230–282 (2018)

    Article  Google Scholar 

  5. Pokharel, P., Pant, B., Pokhrel, K., Pant, H.R., Lim, J.G., Kim, H.Y., Choi, S.: Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites. Compos. B Eng. 78, 192–201 (2015)

    Article  Google Scholar 

  6. Jalaly, S., Vahdani, M., Shahabadi, M., Sadeghi, G.M.M.: Design, fabrication, and measurement of a polymer-based anti-reflection coating for improved performance of a solar panel under a specific incident angle. Sol. Energy Mater. Sol. Cells 189, 175–180 (2019)

    Article  Google Scholar 

  7. Bao, J.J., Zou, B.K., Cheng, Q., Huang, Y.P., Wu, F., Xu, G.W., Chen, C.H.: Flexible and free-standing LiFePO4/TPU/SP cathode membrane prepared via phase separation process for lithium ion batteries. J. Membr. Sci. 541, 633–640 (2017)

    Article  Google Scholar 

  8. Li, H., Oh, J.S., Sinha, T.K., Kim, J.K.: Synergistic influence of Keratin and TPU: An approach towards bioinspired artificial skin. Mater. Chem. Phys. 223, 196–201 (2019)

    Article  Google Scholar 

  9. Bek, M., Betjes, J., von Bernstorff, B.S., Emri, I.: Viscoelasticity of new generation thermoplastic polyurethane vibration isolators. Phys. Fluids 29(12), 121614 (2017)

    Article  Google Scholar 

  10. Drobny, J.G.: Handbook of Thermoplastic Elastomers. Elsevier, Norwich (2007)

    Google Scholar 

  11. Szycher, H.: Biostability of polyurethane elastomers: a critical review. J. Biomater. Appl. 3(2), 297–402 (1988)

    Article  Google Scholar 

  12. Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., Iannace, S.: Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. Eur. Polymer J. 47(5), 925–936 (2011)

    Article  Google Scholar 

  13. Barick, A.K., Tripathy, D.K.: Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Mater. Sci. Eng., A 527(3), 812–823 (2010)

    Article  Google Scholar 

  14. Dan, C.H., Kim, Y.D., Lee, M., Min, B.H., Kim, J.H.: Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites prepared by solution mixing. J. Appl. Polym. Sci. 108(4), 2128–2138 (2008)

    Article  Google Scholar 

  15. Stan, F., Nicoleta-Violeta, S., Adriana-Madalina, C., Catalin, F.: 3D Printing of Flexible and Stretchable Parts Using Multiwall Carbon Nanotube/Polyester-Based Thermoplastic Polyurethane. Journal of Manufacturing Science and Engineering 143(5), (2021)

  16. Liu, L.C., Liang, W.C., Chen, C.M.: Manufacture of recyclable thermoplastic polyurethane (TPU)/Silicone blends and their mechanical properties. Manufact. Lett. 31, 1–5 (2022)

    Article  Google Scholar 

  17. Qi, H.J., Boyce, M.C.: Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 37(8), 817–839 (2005)

    Article  Google Scholar 

  18. Sain, T., Meaud, J., Yeom, B., Waas, A.M., Arruda, E.M.: Rate dependent finite strain constitutive modeling of polyurethane and polyurethane-clay nanocomposites. Int. J. Solids Struct. 54, 147–155 (2015)

    Article  Google Scholar 

  19. Sui, T., Salvati, E., Ying, S., Sun, G., Dolbnya, I.P., Dragnevski, K., Prisacariu, C., Korsunsky, A.M.: Strain softening of nano-scale fuzzy interfaces causes Mullins effect in thermoplastic polyurethane. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  20. Chen, H., Trivedi, A.R., Siviour, C.R.: Application of linear viscoelastic continuum damage theory to the low and high strain rate response of thermoplastic polyurethane. Exp. Mech. 60(7), 925–936 (2020)

    Article  Google Scholar 

  21. Kim, K., Park, J., Suh, J.H., Kim, M., Jeong, Y., Park, I.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens. Actuators, A 263, 493–500 (2017)

    Article  Google Scholar 

  22. Christ, J.F., Aliheidari, N., Pötschke, P., Ameli, A.: Bidirectional and stretchable piezoresistive sensors enabled by multimaterial 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites. Polymers 11(1), 11 (2019)

    Article  Google Scholar 

  23. Kim, M., Jaebong Jung, J., Sungmook, J., Young, H.M., Dae-Hyeong, K., Ji, H.K.: Piezoresistive behaviour of additively manufactured multi-walled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials 12(16), 2613 (2019)

  24. Fraternali, F., Singh, N., Amendola, A., Benzoni, G., Milton, G.W.: A biomimetic sliding-stretching approach to seismic isolation. Nonlinear Dyn. 106(4), 3147–3159 (2021)

    Article  Google Scholar 

  25. Fraternali, F., Singh, N., Amendola, A., Benzoni, G., Milton, G. W.: The 3D print job that keeps quake damage at bay. Nature, Research Highlight, 600(7887), 10 (2021)

  26. Dorfmann, A., Ogden, R.W.: A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40(11), 2699–2714 (2003)

    Article  Google Scholar 

  27. Dorfmann, A., Ogden, Ray W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41(7), 1855–1878 (2004)

    Article  Google Scholar 

  28. Mohotti, D., Ali, M., Ngo, T., Lu, J., Mendis, P.: Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading. Mater. Design 53, 830–837 (2014)

    Article  Google Scholar 

  29. Saedniya, M., Talaeitaba, S.B.: Numerical modeling of elastomeric seismic isolators for determining force-displacement curve from cyclic loading. Int. J. Adv. Struct. Eng. 11(3), 361–376 (2019)

    Article  Google Scholar 

  30. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35(26–27), 3455–3482 (1998)

    Article  Google Scholar 

  31. Amendola, A., Fraternali, F.: Incremental auxetic response of composite lattices under isotropic prestress. Compos. Struct. 191, 145–153 (2018)

  32. Miniaci, M., Mazzotti, M., Amendola, A., Fraternali, F.: Effect of prestress on phononic band gaps induced by inertial amplification. Int. J. Solids Struct. 216, 156–166 (2021)

Download references

Acknowledgements

The great technical support received by Giuseppe Marchese and Antonella Serra (Proplast - Consorzio per la Promozione della Cultura Plastica, Via Roberto di Ferro, 86 - 15122 Alessandria—Italy) during the execution of laboratory tests is gratefully acknowledged.

Funding

This study was funded by Italian Ministry of University and Research PRIN 2017 Grant 2017J4EAYB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Fraternali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 5508 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro Motta, J., Qaderi, S., Farina, I. et al. Experimental characterization and mechanical modeling of additively manufactured TPU components of innovative seismic isolators. Acta Mech 235, 1637–1648 (2024). https://doi.org/10.1007/s00707-022-03447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03447-5

Navigation