Skip to main content
Log in

An efficient Monte Carlo strategy for elasto-plastic structures based on recurrent neural networks

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The Monte Carlo method is computationally expensive. Especially for reliable response statistics in the tail region, a large number of samples has to be computed. In this paper, we propose a strategy that speeds up the crude Monte Carlo method using artificial intelligence. We introduce a recurrent neural network that replaces the iterative calculation procedure to evaluate nonlinear, hysteretic behavior of a structure subjected to a randomized load history. The new strategy is demonstrated on an academic example, i.e., an elasto-plastic frame, which is loaded by a time-variant force. The trained recurrent neural network reliably approximates the structures mechanical response and considerably reduces the computation time per sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adam, C., Heuer, R., Ziegler, F.: Reliable dynamic analysis of an uncertain compound bridge under traffic loads. Acta Mech. 223(8), 1567–1581 (2012). https://doi.org/10.1007/s00707-012-0641-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Azimi, H., Bonakdari, H., Ebtehaj, I., Gharabaghi, B., Khoshbin, F.: Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mech. 229(3), 1197–1214 (2018). https://doi.org/10.1007/s00707-017-2043-9

    Article  Google Scholar 

  3. Bamer, F., Koeppe, A., Markert, B.: An efficient Monte Carlo simulation strategy based on model order reduction and artificial neural networks. Proc. Appl. Math. Mech. 17(1), 287–288 (2017). https://doi.org/10.1002/pamm.201710113

    Article  Google Scholar 

  4. Bamer, F., Markert, B.: An efficient response identification strategy for nonlinear structures subject to nonstationary generated seismic excitations. Mech. Based Des. Struct. Mach. 45(3), 313–330 (2017). https://doi.org/10.1080/15397734.2017.1317269

    Article  Google Scholar 

  5. Bamer, F., Shi, J., Markert, B.: Efficient solution of the multiple seismic pounding problem using hierarchical substructure techniques. Comput. Mech. 62(4), 761–782 (2018). https://doi.org/10.1007/s00466-017-1525-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Bampton, M.C.C., Craig, R.R.J.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  7. Bathe, K.J.: Finite Element Procedures. Prentice Hall, New York (1996)

    MATH  Google Scholar 

  8. Besselink, B., Tabak, U., Lutowska, A., van de Wouw, N., Nijmeijer, H., Rixen, D., Hochstenbach, M., Schilders, W.: A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J. Sound Vib. 332(19), 4403–4422 (2013). https://doi.org/10.1016/j.jsv.2013.03.025

    Article  Google Scholar 

  9. Breitkopf, P., Naceur, H., Rassineux, A., Villon, P.: Moving least squares response surface approximation: formulation and metal forming applications. Comput. Struct. 83(17), 1411–1428 (2005). https://doi.org/10.1016/j.compstruc.2004.07.011

    Article  Google Scholar 

  10. Bucher, C.: Computational Analysis of Randomness in Structural Mechanics: Structures and Infrastructures Book Series. CRC Press, Boca Raton (2009). Google-Books-ID: nZkt02wl6egC

  11. Cao, B.T., Freitag, S., Meschke, G.: A hybrid RNN-GPOD surrogate model for real-time settlement predictions in mechanised tunnelling. Adv. Model. Simul. Eng. Sci. 3, 5 (2016). https://doi.org/10.1186/s40323-016-0057-9

    Article  Google Scholar 

  12. Capuano, G., Rimoli, J.J.: Smart finite elements: a novel machine learning application. Comput. Methods Appl. Mech. Eng. 345, 363–381 (2019). https://doi.org/10.1016/j.cma.2018.10.046

    Article  MathSciNet  Google Scholar 

  13. Challamel, N., Hjiaj, M.: Non-local behavior of plastic softening beams. Acta Mech. 178(3), 125–146 (2005). https://doi.org/10.1007/s00707-005-0225-3

    Article  MATH  Google Scholar 

  14. Chan, T.F., Golub, G.H., LeVeque, R.J.: Updating formulae and a pairwise algorithm for computing sample variances. In: COMPSTAT 1982 5th Symposium Held at Toulouse 1982, pp. 30–41. Physica, Heidelberg (1982). https://doi.org/10.1007/978-3-642-51461-6_3

  15. Cho, S.E.: Probabilistic stability analyses of slopes using the ANN-based response surface. Comput. Geotech. 36(5), 787–797 (2009). https://doi.org/10.1016/j.compgeo.2009.01.003

    Article  Google Scholar 

  16. Fotiu, P., Irschik, H., Ziegler, F.: Forced vibrations of an elasto-plastic and deteriorating beam. Acta Mech. 69(1), 193–203 (1987). https://doi.org/10.1007/BF01175721

    Article  MATH  Google Scholar 

  17. Freitag, S., Cao, B.T., Ninić, J., Meschke, G.: Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes. Comput. Struct. (2017). https://doi.org/10.1016/j.compstruc.2017.03.020

    Article  Google Scholar 

  18. Freitag, S., Graf, W., Kaliske, M.: A material description based on recurrent neural networks for fuzzy data and its application within the finite element method. Comput. Struct. 124, 29–37 (2013). https://doi.org/10.1016/j.compstruc.2012.11.011

    Article  Google Scholar 

  19. Ghaboussi, J., Garrett Jr., J., Wu, X.: Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 117(1), 132–153 (1991). https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)

    Article  Google Scholar 

  20. Ghaboussi, J., Pecknold, D.A., Zhang, M., Haj-Ali, R.M.: Autoprogressive training of neural network constitutive models. Int. J. Numer. Meth. Eng. 42(1), 105–126 (1998). https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V

  21. Ghaboussi, J., Sidarta, D.E.: New nested adaptive neural networks (NANN) for constitutive modeling. Comput. Geotech. 22(1), 29–52 (1998). https://doi.org/10.1016/S0266-352X(97)00034-7

    Article  Google Scholar 

  22. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

  23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  24. Graf, W., Freitag, S., Sickert, J.U., Kaliske, M.: Structural analysis with fuzzy data and neural network based material description. Comput. Aided Civ. Infrastruct. Eng. 27(9), 640–654 (2012). https://doi.org/10.1111/j.1467-8667.2012.00779.x

    Article  Google Scholar 

  25. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: A Search Space Odyssey. arXiv:1503.04069 Cs (2015)

  26. Hambli, R.: Application of neural networks and finite element computation for multiscale simulation of bone remodeling. J. Biomech. Eng. 132(11), 114,502–114,502-5 (2010). https://doi.org/10.1115/1.4002536

    Article  Google Scholar 

  27. Hambli, R.: Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation. Finite Elements Anal. Des. 47(7), 835–842 (2011). https://doi.org/10.1016/j.finel.2011.02.014

    Article  Google Scholar 

  28. Hambli, R., Barkaoui, A.: Multiscale approach for bone remodeling simulation based on finite element and neural network computation. arXiv:1107.3817 Phys. Q-Bio (2011)

  29. Hametner, C., Edelmann, J., Jakubek, S., Mack, W.: An advanced algorithm for partitioning and parameter estimation in local model networks and its application to vehicle vertical dynamics. Acta Mech. 223(8), 1693–1706 (2012). https://doi.org/10.1007/s00707-012-0638-8

    Article  MATH  Google Scholar 

  30. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  31. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  32. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 Cs (2015)

  33. Irschik, H.: Biaxial dynamic bending of elastoplastic beams. Acta Mech. 62(1), 155–167 (1986). https://doi.org/10.1007/BF01175861

    Article  MathSciNet  MATH  Google Scholar 

  34. Javadi, A., Rezania, M.: Intelligent finite element method: an evolutionary approach to constitutive modeling. Adv. Eng. Inform. 23(4), 442–451 (2009). https://doi.org/10.1016/j.aei.2009.06.008

    Article  Google Scholar 

  35. Kaliszuk, J., Waszczyszyn, Z.: Reliability analysis of structures by neural network supported monte carlo methods. In: Rutkowski, P.L., Kacprzyk, P.J. (eds.) Neural Networks and Soft Computing, No. 19 in Advances in Soft Computing, pp. 754–759. Physica, HD (2003). https://doi.org/10.1007/978-3-7908-1902-1_117

  36. Kamiński, M.M.: A generalized stochastic perturbation technique for plasticity problems. Comput. Mech. 45(4), 349 (2009). https://doi.org/10.1007/s00466-009-0455-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Kaveh, A., Laknejadi, K., Alinejad, B.: Performance-based multi-objective optimization of large steel structures. Acta Mech. 223(2), 355–369 (2012). https://doi.org/10.1007/s00707-011-0564-1

    Article  MATH  Google Scholar 

  38. Kerschen, G., Golinval, J., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41(1), 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 Cs (2014)

  40. Kleiber, M., Knabel, J., Rojek, J.: Response surface method for probabilistic assessment of metal forming failures. Int. J. Numer. Methods Eng. 60(1), 51–67 (2004). https://doi.org/10.1002/nme.954

    Article  MATH  Google Scholar 

  41. Koeppe, A., Bamer, F., Hernandez Padilla, C.A., Markert, B.: Neural network representation of a phase-field model for brittle fracture. Proc. Appl. Math. Mech. 17(1), 253–254 (2017). https://doi.org/10.1002/pamm.201710096

    Article  Google Scholar 

  42. Koeppe, A., Bamer, F., Markert, B.: Model reduction and submodelling using neural networks. Proc. Appl. Math. Mech. 16(1), 537–538 (2016). https://doi.org/10.1002/pamm.201610257

    Article  Google Scholar 

  43. Koeppe, A., Bamer, F., Markert, B.: An intelligent meta-element for linear elastic continua. PAMM 18(1), e201800,283 (2018). https://doi.org/10.1002/pamm.201800283

    Article  Google Scholar 

  44. Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks. Manufacturing Letters (Special Issue “Industry 4.0”) (2018). https://doi.org/10.1016/j.mfglet.2018.01.002

  45. Kruse, R., Borgelt, C., Braune, C., Klawonn, F., Moewes, C., Steinbrecher, M.: Computational Intelligence. Springer Fachmedien Wiesbaden, Wiesbaden (2015)

    Book  MATH  Google Scholar 

  46. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  47. Lefik, M., Schrefler, B.A.: Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput. Methods Appl. Mech. Eng. 192(28–30), 3265–3283 (2003). https://doi.org/10.1016/S0045-7825(03)00350-5

    Article  MATH  Google Scholar 

  48. Lü, Q., Low, B.K.: Probabilistic analysis of underground rock excavations using response surface method and SORM. Comput. Geotech. 38(8), 1008–1021 (2011). https://doi.org/10.1016/j.compgeo.2011.07.003

    Article  Google Scholar 

  49. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems. ACM Sigplan Not. 51, 1–1 (2015)

    Article  Google Scholar 

  50. Naceur, H., Ben-Elechi, S., Batoz, J.L., Knopf-Lenoir, C.: Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Mater. Des. 29(4), 781–790 (2008). https://doi.org/10.1016/j.matdes.2007.01.018

    Article  Google Scholar 

  51. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

  52. Oeser, M., Freitag, S.: Modeling of materials with fading memory using neural networks. Int. J. Numer. Meth. Eng. 78(7), 843–862 (2009). https://doi.org/10.1002/nme.2518

    Article  MathSciNet  MATH  Google Scholar 

  53. Papadrakakis, M., Papadopoulos, V., Lagaros, N.D.: Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation. Comput. Methods Appl. Mech. Eng. 136(1–2), 145–163 (1996). https://doi.org/10.1016/0045-7825(96)01011-0

    Article  MATH  Google Scholar 

  54. Pradlwarter, H.J., Schuëller, G.I.: On advanced Monte Carlo simulation procedures in stochastic structural dynamics. Int. J. Non-Linear Mech. 32(4), 735–744 (1997). https://doi.org/10.1016/S0020-7462(96)00091-1

    Article  MATH  Google Scholar 

  55. Rixen, D.J.: A dual Craig–Bampton method for dynamic substructuring. J. Comput. Appl. Math. 168(1–2), 383–391 (2004). https://doi.org/10.1016/j.cam.2003.12.014

    Article  MathSciNet  MATH  Google Scholar 

  56. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cognitive Modeling 323(6088), 533–536. https://doi.org/10.1038/323533a0

  57. Sadeghi, M.H., Lotfan, S.: Identification of non-linear parameter of a cantilever beam model with boundary condition non-linearity in the presence of noise: An NSI- and ANN-based approach. Acta Mech. 228(12), 4451–4469 (2017). https://doi.org/10.1007/s00707-017-1947-8

    Article  MathSciNet  Google Scholar 

  58. Schuëller, G.I., Pradlwarter, H.J., Bucher, C.G.: Efficient computational procedures for reliability estimates of MDOF-systems. Int. J. Non-Linear Mech. 26(6), 961–974 (1991). https://doi.org/10.1016/0020-7462(91)90044-T

    Article  MATH  Google Scholar 

  59. Shahidi, S.G., Pakzad, S.N.: Generalized response surface model updating using time domain data. J. Struct. Eng. 140(8), A4014,001 (2014). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000915

  60. Stoffel, M., Bamer, F., Markert, B.: Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Struct. 131, 102–106 (2018). https://doi.org/10.1016/j.tws.2018.06.035

    Article  Google Scholar 

  61. Theocaris, P.S., Bisbos, C., Panagiotopoulos, P.D.: On the parameter identification problem for failure criteria in anisotropic bodies. Acta Mech. 123(1), 37–56 (1997). https://doi.org/10.1007/BF01178399

    Article  MATH  Google Scholar 

  62. Theocaris, P.S., Panagiotopoulos, P.D.: Plasticity including the Bauschinger effect, studied by a neural network approach. Acta Mech. 113(1), 63–75 (1995). https://doi.org/10.1007/BF01212634

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, H., Pang, M., Zhang, Y.: Effects of strength difference and intermediate principal stress on plane strain elastic-plastic bending of a curved beam. Acta Mech. 227(12), 3351–3366 (2016). https://doi.org/10.1007/s00707-016-1681-7

    Article  MathSciNet  MATH  Google Scholar 

  64. Wong, S.M., Hobbs, R.E., Onof, C.: An adaptive response surface method for reliability analysis of structures with multiple loading sequences. Struct. Saf. 27(4), 287–308 (2005). https://doi.org/10.1016/j.strusafe.2005.02.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Koeppe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeppe, A., Bamer, F. & Markert, B. An efficient Monte Carlo strategy for elasto-plastic structures based on recurrent neural networks. Acta Mech 230, 3279–3293 (2019). https://doi.org/10.1007/s00707-019-02436-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02436-5

Navigation