Skip to main content
Log in

Forces and torques on a prolate spheroid: low-Reynolds-number and attack angle effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The three-dimensional flow field around a prolate spheroid has been obtained by integration of the full Navier–Stokes equations at Reynolds numbers 0.1, 1.0, and 10. The 6:1 spheroid was embedded in a Cartesian mesh by means of an immersed boundary method. In the low-Re range, due to the dominance of viscous stresses, an exceptionally wide computational domain was required, together with a substantial grid refinement in the vicinity of the surface of the immersed spheroid. Flow fields in equatorial and meridional planes were visualized by means of streamlines to illustrate Reynolds number and attack angle effects. Drag and lift forces and torques were computed and compared with the most recent correlation formulas. The largest discrepancies were observed for the moment coefficient, whereas the drag coefficient compared reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, H.I., Soldati, A.: Anisotropic particles in turbulence: status and outlook. Acta Mech. 224, 2219–2223 (2013)

    Article  Google Scholar 

  2. Andersson, H.I., Jiang, F., Okulov, V.L.: Chapter 9: Instabilities in the wake of an inclined prolate spheroid. In: Gelfgat, A. (ed.) Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, Computational Methods in Applied Sciences, vol. 50, pp. 311–352. Springer, Berlin (2019)

    Google Scholar 

  3. Arcen, B., Ouchene, R., Khalij, M., Taniére, A.: Prolate spheroidal particles’ behavior in a vertical wall-bounded turbulent flow. Phys. Fluids 29, 093301 (2017)

    Article  Google Scholar 

  4. Ardekani, M.N., Costa, P., Breugem, W.P., Picano, F., Brandt, L.: Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 43–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balachandar, S.: A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 35, 801–810 (2009)

    Article  Google Scholar 

  6. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 43, 111–133 (2010)

    Article  MATH  Google Scholar 

  7. Barboza, L.G., Gimenez, B.C.G.: Microplastics in the marine environment: current trends and future perspectives. Mar. Pollut. Bull. 97, 5–12 (2015)

    Article  Google Scholar 

  8. Beckers, J.M.: Analytical linear numerical stability condition for an anisotropic three-dimensional advection–diffusion equation. SIAM J. Numer. Anal. 29, 701–713 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, H.: The Stokes resistance of an arbitrary particle IV: arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)

    Article  Google Scholar 

  10. Challabotla, N.R., Zhao, L., Andersson, H.I.: Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2 (2015)

    Article  MathSciNet  Google Scholar 

  11. Do-Quang, M., Amberg, G., Brethouwer, G., Johansson, A.V.: Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006 (2014)

    Article  Google Scholar 

  12. Durham, W.M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M., Stocker, R.: Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4, 2148 (2013)

    Article  Google Scholar 

  13. Eaton, J.K.: Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiph. Flow 35, 792–800 (2009)

    Article  Google Scholar 

  14. El Khoury, G.K., Andersson, H.I., Pettersen, B.: Wakes behind a prolate spheroid in cross flow. J. Fluid Mech. 701, 98–136 (2012)

    Article  MATH  Google Scholar 

  15. Eshghinejadfard, A., Hosseini, S.A., Thévenin, D.: Fully-resolved prolate spheroids in turbulent channel flows: a lattice Boltzmann study. AIP Adv. 7, 095007 (2017)

    Article  Google Scholar 

  16. Eshghinejadfard, A., Zhao, L., Thévenin, D.: Lattice-Boltzmann simulation of resolved oblate spheroids in wall turbulence. J. Fluid Mech. 849, 510–540 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frölich, K., Schneiders, L., Meinke, M., Schröder, W.: Assessment of non-spherical point-particle models in LES using direct particle-fluid simulations. In: 48th AIAA Fluid Dynamics Conference, 2018-06-25-2018-06-29, Atlanta, Georgia, USA (2018). https://doi.org/10.2514/6.2018-3714

  18. Gallily, A.-H., Cohen, I.: On the orderly nature of the motion of nonspherical aerosol particles II Inertial collision between spherical large droplet and an axisymmetrical elongated particle. J. Colloid Interface Sci. 68, 338–356 (1979)

    Article  Google Scholar 

  19. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics, 2nd edn. Noordhoff International Publishing, Leyden (1973)

    MATH  Google Scholar 

  20. Hölzer, A., Sommerfeld, M.: New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184, 361–365 (2008)

    Article  Google Scholar 

  21. Hölzer, A., Sommerfeld, M.: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572–589 (2009)

    Article  Google Scholar 

  22. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  23. Jiang, F., Gallardo, J.P., Andersson, H.I.: The laminar wake behind a 6:1 prolate spheroid at 45\(^{\circ }\) incidence angle. Phys. Fluids 26, 113602 (2014)

    Article  Google Scholar 

  24. Jiang, F., Gallardo, J.P., Andersson, H.I., Zhang, Z.: The transitional wake behind an inclined prolate spheroid. Phys. Fluids 27, 093602 (2015)

    Article  Google Scholar 

  25. Jiménez, J.: Oceanic turbulence at millimeter scales. Scientia Marina 61, 47–56 (1997)

    Google Scholar 

  26. Lucci, F., Ferrante, A., Elghobashi, S.: Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 5–55 (2010)

    Article  MATH  Google Scholar 

  27. Manhart, M., Tremblay, F., Friedrich, R.: MGLET: a parallel code for efficient DNS and LES of complex geometries. In: Jenssen, C.B., Kvamsdal, T., Andersson, H.I., Pettersen, B., Ecer, A., Periaux, J., Satofuka, N., Fox, P. (eds.) Parallel Computational Fluid Dynamics-Trends and Applications, pp. 449–456. Elsevier, Amsterdam (2001)

    Google Scholar 

  28. Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution and deposition of elongated, inertial fibres in turbulent channel flow. Phys. Fluids 22, 0333101 (2010)

    Article  MATH  Google Scholar 

  29. Maxey, M.: Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49, 171–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mortensen, P.H., Andersson, H.I., Gillssen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)

    Article  MATH  Google Scholar 

  31. Ouchene, R., Khalij, M., Tanière, A., Arcen, B.: Drag, lift and torque coefficients for ellipsoidal particles: from low to moderate particle Reynolds numbers. Comput. Fluids 113, 53–64 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ouchene, R., Khalij, M., Arcen, B., Tanière, A.: A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 33–43 (2016)

    Article  MATH  Google Scholar 

  33. Peller, N., Le Duc, A., Tremblay, F., Manhart, M.: High-order stable interpolations for immersed boundary methods. Int. J. Numer. Methods Fluids 52, 1175–1193 (2006)

    Article  MATH  Google Scholar 

  34. Richter, A., Nikrityuk, P.A.: Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Int. J. Heat Mass Transf. 55, 1343–1354 (2012)

    Article  MATH  Google Scholar 

  35. Sanjeevi, S.K.P., Padding, J.T.: On the orientational dependence of drag experienced by spheroids. J. Fluid Mech. 820, R1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sanjeevi, S.K.P., Kuipers, J.A.M., Padding, J.T.: Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Int. J. Multiph. Flow 106, 325–337 (2018)

    Article  MathSciNet  Google Scholar 

  37. Schiller, L., Naumann, A.Z.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Deutsch Ing. 77, 318–320 (1933)

    Google Scholar 

  38. Schneiders, L., Meinke, M., Schröder, W.: Direct particle-fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188–227 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schneiders, L., Meinke, M., Schröder, W.: On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence. Fuel 201, 2–14 (2017b)

    Article  Google Scholar 

  40. Shaw, R.A.: Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183–227 (2003)

    Article  MATH  Google Scholar 

  41. Siewert, C., Kunnen, R.P.J., Meinke, M., Schröder, W.: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 42–56 (2014)

    Article  Google Scholar 

  42. Sommerfeld, M., van Wachem, B., Oliemans, R.: Best practice guidelines for computational fluid dynamics of dispersed multiphase flows. In: ERCOFTAC (2008)

  43. Sommerfeld, M., Qadir, Z.: Fluid dynamic forces acting on irregular shaped particles: simulations by Lattice-Boltzmann method. Int. J. Multiph. Flow 101, 212–222 (2018)

    Article  MathSciNet  Google Scholar 

  44. Tavakol, M.M., Abouali, O., Yaghoubi, M., Ahmadi, G.: Dispersion and deposition of ellipsoidal particles in a fully developed laminar pipe flow using non-creeping formulations for hydrodynamic forces and torques. Int. J. Multiph. Flow 75, 54–67 (2015)

    Article  MathSciNet  Google Scholar 

  45. van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford, CA (1982)

    Google Scholar 

  46. van Wachem, B., Zastawny, M., Zhao, F., Mallouppas, G.: Modelling of gas–solid turbulent channel flow with non-spherical particles with large Stokes numbers. Int. J. Multiph. Flow 68, 80–92 (2015)

    Article  MathSciNet  Google Scholar 

  47. Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–276 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Williamson, J.H.: Low-storage Runge–Kutta schemes. J. Comput. Phys. 56, 48–56 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xia, J., Luo, K., Fan, J.: A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation. Int. J. Heat Mass Transf. 75, 302–312 (2014)

    Article  Google Scholar 

  50. Zastawny, M., Mallouppas, G., Zhao, F., van Wachem, B.: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int. J. Multiph. Flow 39, 227–239 (2012)

    Article  Google Scholar 

  51. Zhang, H., Ahmadi, G., Fan, F.-G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiph. Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Research Council of Norway through grants of computing time on the national HPC infrastructure (Programme for Supercomputing, projects nn9191k and nn2469k) and by research grant No. 250744 Plankton in oceanic turbulence. FJ acknowledges funding from the Future Industry’s Leading Technology Development Program (No. 10042430) of MOTIE/KEIT of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengjian Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, H.I., Jiang, F. Forces and torques on a prolate spheroid: low-Reynolds-number and attack angle effects. Acta Mech 230, 431–447 (2019). https://doi.org/10.1007/s00707-018-2325-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2325-x

Navigation