Skip to main content
Log in

Nonlinear dynamic analysis considering explicit and implicit time marching techniques with adaptive time integration parameters

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, adaptive explicit and implicit time marching techniques are proposed to analyze nonlinear dynamic models. In these time marching adaptive procedures, the adopted time integration parameters modify themselves along the solution process, in accordance with the varying properties and results of the model. Thus, the time integrators are locally evaluated, assuming different values along the spatial and temporal discretizations, enabling more accurate and efficient solution techniques. Numerical results are presented along the manuscript, illustrating the good performance of the proposed space/time adaptive explicit and implicit time marching strategies for nonlinear analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  2. Hoff, C., Taylor, R.L.: Higher derivative explicit one step methods for non-linear dynamic problems. Part I: design and theory. Int. J. Numer. Methods Eng. 29, 275–290 (1990)

    Article  MATH  Google Scholar 

  3. Tamma, K.K., Namburu, R.R.: A robust self-starting explicit computational methodology for structural dynamic applications: architectures and representations. Int. J. Numer. Methods Eng. 29, 1441–1454 (1990)

    Article  Google Scholar 

  4. Tamma, K.K., D’Costa, J.F.: A new explicit variable time-integration self-starting methodology for computational structural dynamics. Int. J. Numer. Methods Eng. 33, 1165–1180 (1992)

    Article  Google Scholar 

  5. Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Eng. 100, 63–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Simo, J.C., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik 43, 757–792 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, J., Lee, J.M.: A new family of explicit time integration methods for linear and non-linear structural dynamics. Int. J. Numer. Methods Eng. 37, 3961–3976 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hulbert, G.M., Chung, J.: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput. Methods Appl. Mech. Eng. 137, 175–188 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Quadrelli, M.B., Atluri, S.N.: Mixed variational principles in space and time for elastodynamics analysis. Acta Mech. 136, 193–208 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, X., Sha, D., Tamma, K.K.: A novel non-linearly explicit second-order accurate L-stable methodology for finite deformation: hypoelastic/hypoelasto-plastic structural dynamics problems. Int. J. Numer. Methods Eng. 59, 795–823 (2004)

    Article  MATH  Google Scholar 

  11. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83, 2513–34 (2005)

    Article  MathSciNet  Google Scholar 

  12. Nicholson, D.W., Lin, B.: On a fourth order FEA multistep time integration method for lightly damped media. Acta Mech. 183, 23–40 (2006)

    Article  MATH  Google Scholar 

  13. Bathe, K.J.: Conserving energy and momentum in nolinear dynamic: a simple implicit time integration scheme. Comput. Struct. 85, 437–445 (2007)

    Article  Google Scholar 

  14. Chang, S.Y.: Nonlinear evaluations of unconditionally stable explicit algorithms. Earthq. Eng. Eng. Vib. 8, 329–340 (2009)

    Article  Google Scholar 

  15. Gopalakrishnan, S., Ramabathiran, A.A.: Comparative study of different nonconserving time integrators for wave propagation in hyperelastic wavegides. Acta Mech. 225, 2789–2814 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grosseholz, G., Soares, D., von Estorff, O.: A stabilized central difference scheme for dynamic analysis. Int. J. Numer. Methods Eng. 102, 1750–1760 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Soares, D.: A simple and effective new family of time marching procedures for dynamics. Comput. Methods Appl. Mech. Eng. 283, 1138–1166 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wang, X., Atluri, S.N.: A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics. Comput. Mech. 59, 861–876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Soares, D.: A simple and effective single-step time marching technique based on adaptive time integrators. Int. J. Numer. Methods Eng. 109, 1344–1368 (2017)

    Article  MathSciNet  Google Scholar 

  20. Hughes, T.J.R.: The Finite Element Method—Linear Static and Dynamic Finite Element Analysis. Dover Publications INC., New York (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

The financial support by CNPq (conselho nacional de desenvolvimento científico e tecnológico), CAPES (coordenação de aperfeiçoamento de pessoal de nível superior) and FAPEMIG (fundação de amparo à Pesquisa do estado de minas gerais) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim Soares Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D. Nonlinear dynamic analysis considering explicit and implicit time marching techniques with adaptive time integration parameters. Acta Mech 229, 2097–2116 (2018). https://doi.org/10.1007/s00707-017-2104-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2104-0

Navigation