Skip to main content
Log in

Physical variational principle in dissipative media

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The physical variational principle (PVP) is a physical principle which is implied in the thermodynamic laws. For a conservative system, the PVP is implied in the first thermodynamic law and gives the motion equation. But for a dissipative system, PVP is implied in the extended Gibbs equation, which is the result of the first and second thermodynamic laws. The precision of the PVP in a dissipative system is in the same order of the Gibbs equation. The dissipative work and its converted internal irreversible heat are simultaneously included in the PVP to get the governing equation and the boundary condition of the dissipated variables. The “generalized motion equations” including governing equations of the mechanical momentum and thermoelastic, thermal viscoelastic, thermal elastoplastic, linear thermoelastic diffusive and linear electromagnetic thermoelastic materials etc. can be derived by the PVP of dissipative media in this paper. The conservative system is the special case of the dissipative system. Other than the mathematical variational principle, which is obtained by a known governing equation, the PVP is used to deduce the governing equation. The PVPs including the hyperbolic temperature wave equation with a finite phase speed are also discussed shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courant R., Hilbert D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers, Inc., New York (1953)

    MATH  Google Scholar 

  2. Hu H.-C.: Variational Principle and Its Application in Theory of Elasticity. Science Press, Beijing (1981) (in Chinese)

    Google Scholar 

  3. Kuang Z.-B.: Some problems in electrostrictive and magnetostrictive materials. Acta Mech. Solida Sin. 20, 219–227 (2007)

    Article  Google Scholar 

  4. Kuang Z.-B.: Some variational principles in elastic dielctric and elastic magnetic materials. Eur. J. Mech. A Solids 27, 504–514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kuang Z.-B.: Some variational principles in electroelastic media under finite deformation. Sci. China Ser. G 51, 1390–1402 (2008)

    Article  MATH  Google Scholar 

  6. Kuang Z.-B.: Internal energy variational principles and governing equations in electroelastic analysis. Int. J. Solids Struct. 46, 902–911 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuang Z.-B.: Physical variational principle and thin plate theory in electro-magneto-elastic analysis. Int. J. Solids Struct. 48, 317–325 (2011)

    Article  MATH  Google Scholar 

  8. Kuang Z.B.: Some thermodynamic problems in continuum mechanics. In: Piraján, J.C.M. (ed.) Thermodynamics—Kinetics of Dynamic Systems, pp. 1–20. Intech Open Access Publisher, Croatia (2011)

    Google Scholar 

  9. Kuang Z.-B.: Theory of Electroelasticity. Springer, Berlin (2013)

    MATH  Google Scholar 

  10. Kuang Z.-B.: Theory of Electroelasticity. Shanghai Jiaotong University Press, Shanghai (2014)

    Book  MATH  Google Scholar 

  11. Kuang Z.-B.: An applied electro-magneto-elastic thin plate theory. Acta Mech. 225, 1153–1166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nowacki W.: Some general theorems of thermopiezoelectricity. J. Therm. Stress 1, 171–182 (1978)

    Article  MathSciNet  Google Scholar 

  13. Kuang Z.-B.: Variational principles for generalized thermodiffusion theory in pyroelectricity. Acta Mech. 21(4), 275–289 (2010)

    Article  MATH  Google Scholar 

  14. Benjeddou A., Andrianarison O.: A heat mixed variational theorem for thermoelastic multilayered composites. Comput. Struct. 84, 1247–1255 (2006)

    Article  MathSciNet  Google Scholar 

  15. De Groot S., Mazur R.P.: Nonequilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  16. Kjelstrup S., Bedeaux D.: Non-equilibrium Thermodynamics of Heterogeneous Systems. World scientific publishing Co., New Jersey (2008)

    Book  MATH  Google Scholar 

  17. Kuang Z.-B.: Nonlinear Continuum Mechanics. Shanghai Jiaotong University Press, Shanghai (2002) (in Chinese)

    Google Scholar 

  18. Bedford A., Drumheller D.S.: Recent advances: theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bejan A.: Entropy Generation Minimization. Boca Raton, CRC Press, New York (1996)

    MATH  Google Scholar 

  20. Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, London (1950)

    MATH  Google Scholar 

  21. Yang Q., Stainier L., Ortiz M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Incropera F.P., Dewitt D.P., Bergman T.L., Lavine A.S.: Principles of Heat and Mass Transfer. Wiley, Singapore (2013)

    Google Scholar 

  23. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  24. Sherief H.H., Hamza F.A., Saleh’s H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eringen A.C., Maugin G.A.: Elecgtrodynamics of Continuum. Springer, New York (1989)

    Google Scholar 

  26. Pao, Y.H.: Electromagnetic forces in deformable continua in NEMAT-NASSER. In: Mechanics Today. Bath: Printed in Great Britain by Pit Man, pp. 209–305 (1978)

  27. Stratton J.A.: Electromagnetic Theory. Mcgraw-Hill1, New York (1941)

    MATH  Google Scholar 

  28. Shen S.P., Kuang Z.B.: An active control model of laminated piezothermoelastic plate. Int. J. Solids Struct. 36, 1925–1947 (1999)

    Article  MATH  Google Scholar 

  29. Kuang Z.-B.: Variational principles for generalized dynamical theory of thermopiezoelectricity. Acta Mech. 203, 1–11 (2009)

    Article  MATH  Google Scholar 

  30. Kuang Z.-B.: Discussions on the temperature wave equation. Int. J. Heat Mass Transf. 71C, 424–430 (2014)

    Article  Google Scholar 

  31. Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  32. Green A.E. Lindsay: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Bang Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, ZB. Physical variational principle in dissipative media. Acta Mech 227, 1095–1110 (2016). https://doi.org/10.1007/s00707-015-1487-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1487-z

Keywords

Navigation