Skip to main content
Log in

Skew-symmetric couple-stress fluid mechanics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

There can be no doubt as to the importance of vortical motion in fluid mechanics. Yet, very little attention is given typically to the balance law of angular momentum and to its role in defining the fundamental character of stress, which as a result is usually assumed as a symmetric tensor. Here, we allow for the possibility of couple-stresses, along with general non-symmetric force–stresses, and develop a self-consistent size-dependent theory within the context of classical continuum mechanics. This development relies upon the identification of the following key components for the dynamic response of three-dimensional fluid continua: (i) fundamental, uniquely defined kinematical measures of flow, (ii) an independent set of energy conjugate variables, (iii) the corresponding permissible natural and essential boundary conditions, and (iv) a non-redundant set of body-force and inertial contributions. Based upon this formulation, one can recognize that the previous couple-stress theory for fluids suffers from some inconsistencies, which may have restricted its applicability in the study of viscous flows. After presenting the general formulation of the new consistent theory, we specialize for incompressible viscous flow and consider the problem of generalized Poiseuille flow within this size-dependent fluid mechanics. Finally, we conclude that the theory presented here may provide a basis for a broad range of fluid mechanics applications and for fundamental studies of flows at the finest scales for which a continuum representation is valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cauchy A.-L.: Sur l’équilibre et le movement intérieur des corps considérés comme des masses continues. Ex. de Math. 4, 293–319 (1828)

    Google Scholar 

  2. Voigt, W.: Allgemeine Formeln für die Bestimmung der Elasticitätsconstanten von Krystallen durch die Beobachtung der Biegung und Drillung von Prismen. Ann. Phys. 16, 273–310, 398–415 (1882)

  3. Voigt W.: Theoretische Studien über die Elastizitätsverhältnisse der Kristalle (Theoretical studies on the elasticity relationships of crystals). Abh. der Ges. der Wiss. 34, 3–51 (1887)

    Google Scholar 

  4. Cosserat, E., Cosserat, F.: Théorie des corps déformables (Theory of deformable bodies). A. Hermann et Fils, Paris (1909)

  5. Dahler J.S., Scriven L.E.: Theory of structured continua. I. General consideration of angular momentum and polarization. Proc. R. Soc. Lond. Ser. A 275, 504–527 (1963)

    Article  Google Scholar 

  6. Condiff D.W, Dahler J.S.: Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842–854 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eringen A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  8. Eringen A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 2, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  9. Cowin S.C.: The theory of polar fluids. Adv. Appl. Mech. 14, 279–347 (1974)

    Article  Google Scholar 

  10. Nowacki W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  11. Mindlin R.: Micro-structure in linear elasticity. Adv Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MATH  MathSciNet  Google Scholar 

  12. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nikolaevskiy V.N.: Asymmetric fluid mechanics and averaged description of turbulent flow. Dok. Akad. Nauk SSSR [Sov. Phys. Dkl.]14, 120–122 (1969)

    Google Scholar 

  14. Nikolaevskiy V.N.: Angular Momentum in Geophysical Turbulence. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  15. Mattioli G.D.: Ricerche sulla meccanica dei moti fluidi turbolenti. RSMUP 4, 67–91 (1933)

    MATH  Google Scholar 

  16. Mattioli, G.D.: Teoria dinamica dei regimi fluidi turbolenti. (CEDAM, Padua 1937)

  17. Ferrari, C.: The transport of vorticity through fluids in turbulent motion, NACA TM 799, (1936)

  18. Dahler J.S.: Transport phenomena in a fluid composed of diatomic molecules. J. Chem. Phys. 30, 1447–1475 (1959)

    Article  Google Scholar 

  19. Aero E.L., Bulygin A.N., Kuvshinsky E.V.: Asymmetric hydrodynamics. J. Appl. Math. Mech. (PMM) 29, 297–308 (1964)

    Google Scholar 

  20. Lumley J.L.: Invariants in turbulent flow. Phys. Fluids 9, 2111–2113 (1966)

    Article  MATH  Google Scholar 

  21. Condiff D.W., Brenner H.: Transport mechanics in systems of orientable particles. Phys. Fluids 12, 539–551 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rae W.: Flows with significant orientation effects. AIAA J. 14, 11–16 (1976)

    Article  Google Scholar 

  23. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  25. Koiter W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ned. Akad. Wet. Ser B. 67, 17–44 (1964)

    MATH  Google Scholar 

  26. Stokes V.K.: Couple stresses in fluids. Phys. Fluids 9, 1709–1715 (1966)

    Article  Google Scholar 

  27. Valanis K.C., Sun C.T.: Poiseuille flow of a fluid with couple stress with applications to blood flow. Biorheology 6, 85–97 (1969)

    Google Scholar 

  28. Ariman T., Turk M.A., Sylvester N.D.: Applications of microcontinuum fluid mechanics. Int. J. Eng. Sci. 12, 273–293 (1974)

    Article  MATH  Google Scholar 

  29. Ramanaiah G., Sarkar P.: Squeeze films and thrust-bearings lubricated by fluids with couple stress. Wear 48, 309–316 (1978)

    Article  Google Scholar 

  30. Sinha P., Singh C., Prasad K.R.: Couple stresses in journal bearing lubricants and the effect of cavitation. Wear 67, 15–24 (1981)

    Article  Google Scholar 

  31. Srivastava L.M.: Flow of couple stress fluid through stenotic blood-vessels. J. Biomech. 18, 479–486 (1985)

    Article  Google Scholar 

  32. Lin J.R.: Squeeze film characteristics of finite journal bearings: couple stress fluid model. Trib. Int. 31, 201–207 (1998)

    Article  Google Scholar 

  33. Mekheimer Kh.S.: Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys. Lett. A 372, 4271–4278 (2008)

    Article  MATH  Google Scholar 

  34. Napoli G., Vergori L.: Equilibrium of nematic vesicles. J. Phys. A Math. Theory 43, 445207 (2010)

    Article  MathSciNet  Google Scholar 

  35. Hadjesfandiari A.R., Dargush G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)

    Article  Google Scholar 

  36. de Wit R.: Continuous and discrete disclinations in anisotropic elasticity. Theory of disclinations: II. J. Res. Natl. Bur. Stand. Sec. A 77, 49–99 (1973)

    Google Scholar 

  37. Hamilton W.R.: Elements of Quaternions. Longmans, Green & Co., London (1866)

    Google Scholar 

  38. Upadhyay M.V., Capolungo L., Taupin V., Fressengeas C.: Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations. Philos. Mag. 93, 794–832 (2013)

    Article  Google Scholar 

  39. Taupin V., Capolungo L., Fressengeas C., Das A., Upadhyay M.: Grain boundary modeling using an elasto-plastic theory of dislocation and disclination fields. J. Mech. Phys. Solids 61, 370–384 (2013)

    Article  Google Scholar 

  40. Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes. AIAA Paper 81-1259 (1981)

  41. Swanson R.C., Turkel E.: On central-difference and upwind schemes. J. Comput. Phys. 101, 292–306 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ducros F., Ferrand V., Nicoud F., Weber C., Darracq D., Gacherieu C., Poinsot T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1992)

    Article  Google Scholar 

  43. Hadjesfandiari A.R., Dargush G.F., Hajesfandiari A.: Consistent skew-symmetric couple stress theory for size-dependent creeping flow. J. Non-Newtonian Fluid Mech. 196, 83–94 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Dargush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadjesfandiari, A.R., Hajesfandiari, A. & Dargush, G.F. Skew-symmetric couple-stress fluid mechanics. Acta Mech 226, 871–895 (2015). https://doi.org/10.1007/s00707-014-1223-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1223-0

Keywords

Navigation