Skip to main content
Log in

The inverse problem of Lagrangian mechanics for Meshchersky’s equation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Variable-mass systems are not included in the conventional domain of the analytical and variational methods of classical mechanics. This is due to the fact that the fundamental principles of mechanics were primarily conceived for constant-mass systems. In the present article, an analytical and variational formulation for variable-mass systems will be proposed. This will be done from the solution of the here called ‘inverse problem of Lagrangian mechanics for Meshchersky’s equation’. The first problem of this nature was posed in 1887, by Helmholtz (J. reine angew. Math. 100:137–166, 1887). Investigations on the matter are far from being exhausted. Within mechanics, it means the construction of a Lagrangian from a given equation of motion. To the authors’ best knowledge, aiming at general results, the inverse problem of Lagrangian mechanics has not been properly connected to Meshchersky’s equation yet. This is the main goal of this article. We will address the issue by assuming that mass depends on generalized coordinate, generalized velocity and on time. After the construction of a Lagrangian from Meshchersky’s equation, a general and unifying mathematical formulation will emerge in accordance. Therefore, variable-mass systems will be accommodated at the level of analytical mechanics. A variational formulation, which will be written via a principle of stationary action, and a Hamiltonian formulation will be both stated. The latter could be read as the ‘Hamiltonization’ of variable-mass systems from the solution of the inverse problem of Lagrangian mechanics. An energy-like conservation law will naturally appear from the simplification of the general theory to the case of a system with mass solely dependent on a generalized coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berdichevsky V.L.: Variational Principles of Continuum Mechanics I. Fundamentals. Springer, Berlin, Heidelberg (2009)

    MATH  Google Scholar 

  2. Pars L.A.: A Treatise on Analytical Dynamics. Heinemann, London (1965)

    MATH  Google Scholar 

  3. Lanczos C.: The Variational Principles of Mechanics. Dover, New York (1970)

    MATH  Google Scholar 

  4. Riewe F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E. 53(2), 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  5. Santilli R.M.: Foundations of Theoretical Mechanics I. The Inverse Problem in Newtonian Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  6. Whittaker E.T.: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)

    Google Scholar 

  7. Irschik H., Holl H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(2), 145–160 (2004)

    Article  Google Scholar 

  8. Eke F.O., Mao T.C.: On the dynamics of variable mass systems. Int. J. Mech. Eng. Educ. 30(2), 123–136 (2002)

    Article  Google Scholar 

  9. Havas P.: The range of application of the Lagrange formalism. Suppl. Nuovo Cim. 5(10), 363–388 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bateman H.: On dissipative systems and related variational principles. Phys. Rev. 38(4), 815–819 (1931)

    Article  Google Scholar 

  11. Vujanović B.: On one variational principle for irreversible phenomena. Acta Mech. 19(3-4), 259–275 (1974)

    Article  MathSciNet  Google Scholar 

  12. Atanacković T.M.: On a stationarity principle for non-conservative dynamical systems. Int. J. Nonlinear Mech. 13(3), 139–143 (1978)

    Article  MATH  Google Scholar 

  13. Riewe F.: Mechanics with fractional derivatives. Phys. Rev. E. 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  14. Dreisigmeyer D.W., Young P.M.: Nonconservative Lagrangian mechanics: a generalized function approach. J. Phys. A: Math. Gen. 36(30), 8297–8310 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kosiński W., Perzyna P.: On consequences of the principle of stationary action for dissipative bodies. Arch. Mech. 64(1), 95–106 (2012)

    MathSciNet  Google Scholar 

  16. Mušicki Dj.: Analysis of a class of nonconservative systems reducible to pseudoconservative ones and their energy relations. Acta Mech. 223(10), 2117–2133 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kovačić I., Zuković M.: Oscillators with a power-form restoring force and fractional derivative damping: application of averaging. Mech. Res. Commun. 41, 37–43 (2012)

    Article  Google Scholar 

  18. Cvetićanin L.: Stability of a clamped-free rotor with variable mass for the case of radial rubbing. J. Sound Vib. 129(3), 489–499 (1989)

    Article  Google Scholar 

  19. Cvetićanin L.: Conservation laws in systems with variable mass. J. Appl. Mech. 60(4), 954–958 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Irschik H., Holl H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3-4), 231–248 (2002)

    Article  MATH  Google Scholar 

  21. Pesce C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position. J. Appl. Mech. 70(5), 751–756 (2003)

    Article  MATH  Google Scholar 

  22. Cvetićanin L., Djukić Dj.: Dynamic properties of a body with discontinual mass variation. Nonlinear Dyn. 52(3), 249–261 (2008)

    Article  MATH  Google Scholar 

  23. Irschik H.: The Cayley variational principle for continuous-impact problems: a continuum mechanics based version in the presence of a singular surface. J. Theor. Appl. Mech. 50(3), 717–727 (2012)

    Google Scholar 

  24. Casetta L., Pesce C.P.: On the generalized canonical equations of Hamilton for a time-dependent mass particle. Acta Mech. 223(12), 2723–2726 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Casetta L., Pesce C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224(4), 919–924 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Helmholtz, H.: Über die physikalische Bedeutung des Princips der kleinsten Wirkung. J. reine angew. Math. 100, 137–166 (1887)

    Google Scholar 

  27. Darboux G.: Leçons sur la Théorie Générale des Surfaces. Gauthier-Villars, Paris (1891)

    Google Scholar 

  28. Rossi O., Musilová J.: On the inverse variational problem in nonholonomic mechanics. Commun. Math. 20(1), 41–62 (2012)

    MATH  MathSciNet  Google Scholar 

  29. Bourdin, L., Cresson, J.: Helmholtz’s inverse problem of the discrete calculus of variations. arXiv:1203.1209v1 [math.DS] (2012)

  30. Leubner C., Krumm P.: Lagrangians for simple systems with variable mass. Eur. J. Phys. 11(1), 31–34 (1990)

    Article  Google Scholar 

  31. Venturi, D.: Conjugate flow action functionals. arXiv:1110.2968v2 [math-ph] (2012)

  32. Van Brunt B.: The Calculus of Variations. Springer, New York (2004)

    MATH  Google Scholar 

  33. Anderson J.L.: Principles of Relativity Physics. Academic, New York (1967)

    Google Scholar 

  34. Cayley A.: On a class of dynamical problems. Proc. R. Soc. Lond. 8, 506–511 (1857)

    Article  Google Scholar 

  35. Mikhailov G.K.: On the history of variable-mass system dynamics. Mech. Solid. 10(5), 32–40 (1975)

    Google Scholar 

  36. Yan C.C.: Construction of Lagrangians and Hamiltonians from the equation of motion. Am. J. Phys. 46(6), 671–675 (1978)

    Article  Google Scholar 

  37. Nucci M.C., Arthurs A.M.: On the inverse problem of calculus of variations for fourth-order equations. Proc. R. Soc. A. 466, 2309–2323 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Goldstein H., Poole C.P., Safko J.L.: Classical Mechanics. Addison-Wesley, San Francisco (2002)

    Google Scholar 

  39. Casetta, L., Pesce, C.P.: The proper definition of the added mass for the water entry problem. In: Proceedings of the 21st International Workshop on Water Waves and Floating Bodies. Loughborough, UK (2006)

  40. Pesce C.P., Casetta L., Santos F.M.: Equation of motion governing the dynamics of vertically collapsing buildings. J. Eng. Mech. 138(12), 1420–1431 (2012)

    Article  Google Scholar 

  41. Mušicki Dj.: General energy change law for systems with variable mass. Eur. J. Mech. A-Solid. 18(4), 719–730 (1999)

    Article  MATH  Google Scholar 

  42. Casey J.: Geometrical derivation of Lagrange’s equations for a system of particles. Am. J. Phys. 62(9), 836–847 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  43. Casey J.: On the advantages of a geometrical viewpoint in the derivation of Lagrange’s equations for a rigid continuum. Z. Angew. Math. Phys. 46, S805–S847 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Casey J.: Pseudo-rigid continua: basic theory and a geometrical derivation of Lagrange’s equations. Proc. R. Soc. A. 460, 2021–2049 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Casetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casetta, L., Pesce, C.P. The inverse problem of Lagrangian mechanics for Meshchersky’s equation. Acta Mech 225, 1607–1623 (2014). https://doi.org/10.1007/s00707-013-1004-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1004-1

Keywords

Navigation