Skip to main content
Log in

The anti-plane vibration of a quartz plate with an additional partial non-uniform mass layer for acoustic wave sensing

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The anti-plane vibration of a quartz plate having an additional partial non-uniform mass layer is solved by ignoring the effect of small c 56 in comparison with other elastic constants. This analysis is based on the trigonometric series solution, and the convergence is examined. Numerical simulation is conducted for several different types of layers of different thicknesses using linear, cosine, and quadratic functions. The frequency spectrums, in addition to the length and mass fraction of the layer, are discussed separately. Compared with the homogeneous mass layer, the non-homogeneous layer with greater inertia leads to earlier appearance of the higher modes and more modes trapped under the same condition. Especially, there is no energy trapping in the plate with a fully covered uniform mass layer. However, this kind of energy trapping can be obtained again when the surface is non-uniform for some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kosinski, J.A.: Thickness vibrations of flat piezoelectric plates with massy electrodes of unequal thickness. In: Proceedings of IEEE Ultrasonics Symposium, pp. 70–73 (2003)

  2. Miller J.G., Bolef D.I.: Acoustic wave analysis of the operation of quartz-crystal film-thickness monitors. J. Appl. Phys. 39, 5815–5816 (1968)

    Article  Google Scholar 

  3. Sauerbrey G.Z.: Use of quartz vibrator for weighing thin films on a microbalance. Z. Physik 155, 206–222 (1959)

    Article  Google Scholar 

  4. Boersma F., Van Ballegooyen E.C.: Rotated Y-cut quartz crystal with two different electrodes treated as a one-dimensional acoustic composite resonator. J. Acoust. Soc. Am. 62, 335–340 (1977)

    Article  Google Scholar 

  5. Yang J., Yang Z.: Analytical and numerical modeling of resonant piezoelectric devices in China—a review. Sci. China Ser. G-Phys. Mech. Astron. 51, 1775–1807 (2008)

    Article  Google Scholar 

  6. Vander Steen C., Boersma F., Van Ballegooyen E.C.: The influence of mass loading outside the electrode area on the resonant frequencies of a quartz-crystal microbalance. J. Appl. Phys. 48, 3201–3205 (1977)

    Article  Google Scholar 

  7. Mindlin R.D., Lee P.C.Y.: Thickness-shear and flexural vibrations of partially plated, crystal plates. Int. J. Solids Struct. 2, 125–139 (1966)

    Article  Google Scholar 

  8. Lu P., Shen F., Chen H.: A theoretical analysis of mechanical dissipation of an electroded quartz resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1069–1072 (2003)

    Article  Google Scholar 

  9. Lu F., Lee H.P., Lim S.P.: Quartz crystal microbalance with rigid mass partially attached on electrode surfaces. Sensor. Actuat. A-Phys. 112, 203–210 (2004)

    Article  Google Scholar 

  10. Wang J.: Consideration of stiffness and mass effects of relatively thicker electrodes with Mindlin plate theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1218–1221 (2006)

    Article  Google Scholar 

  11. Liu B., Jiang Q., Yang J.: Frequency shifts in a quartz plate piezoelectric resonator in contact with a viscous fluid under a separated electrode. Int. J. Appl. Electromagnet. Mech. 35, 177–187 (2011)

    Google Scholar 

  12. Du J., Xian K., Wang J., Yang J.: Thickness vibration of piezoelectric plates of 6 mm crystals with tilted six-fold axis and two-layered thick electrodes. Ultrasonics 49, 149–152 (2009)

    Article  Google Scholar 

  13. Vig J.R., Ballato A.: Comments on the effects of nonuniform mass loading on a quartz crystal microbalance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1123–1124 (1998)

    Article  Google Scholar 

  14. Yang J.: Frequency shifts in a piezoelectric body due to small amounts of additional mass on its surface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1199–1202 (2004)

    Article  Google Scholar 

  15. Yang J., Guo S.: Vibrations of a crystal body with a shear-deformable surface mass layer. Acta Mech. 190, 223–232 (2007)

    Article  MATH  Google Scholar 

  16. Liu N., Yang J., Chen W.: Effects of a mass layer with gradually varying thickness on a quartz crystal microbalance. IEEE Sens. J. 11, 1635–1639 (2011)

    Article  Google Scholar 

  17. Tiersten H.F., Lwo B.J., Dulmet B.: Transversely varying thickness modes in trapped energy resonators with shallow and beveled contours. J. Appl. Phys. 80, 1037–1046 (1996)

    Article  Google Scholar 

  18. Wang J., Shen L., Yang J.: Effects of electrodes with continuously varying thickness on energy trapping in thickness-shear mode quartz resonators. Ultrasonics 48, 150–154 (2008)

    Article  Google Scholar 

  19. Liu N., Yang J., Chen W.: Effects of mass layer nonuniformity on a quartz-crystal microbalance. IEEE Sens. J. 11, 934–938 (2011)

    Article  Google Scholar 

  20. Mindlin R.D.: Bechmann’s number for harmonic overtones of thickness/twist vibrations of rotated Y-cut quartz plates. J. Acoust. Soc. Am. 41, 969–973 (1967)

    Article  Google Scholar 

  21. He H., Liu J., Yang J.: Analysis of a monolithic crystal plate acoustic wave filter. Ultrasonics 51, 991–996 (2011)

    Article  Google Scholar 

  22. Joshi S.P.: Non-linear constitutive relations for piezoceramic materials. Smart Mater. Struct. 1, 80–83 (1992)

    Article  Google Scholar 

  23. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Google Scholar 

  24. Kong Y., Liu J., He H., Yang J.: Effects of mass layer dimension on a finite quartz crystal microbalance. Acta Mech. 222, 103–113 (2011)

    Article  MATH  Google Scholar 

  25. Yang J., Chen Z., Hu H.: Electrically forced vibration of a thickness-twist mode piezoelectric resonator with non-uniform electrodes. Acta Mech. Solida Sin. 20, 266–274 (2007)

    Google Scholar 

  26. Yang J., Chen Z., Hu Y.: Vibration of a thickness-twist mode piezoelectric resonator with asymmetric non-uniform electrodes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 841–848 (2008)

    Article  Google Scholar 

  27. Bovik P.: A comparison between the Tiersten model and O(H) boundary conditions for elastic surface waves guided by thin layers. ASME J. Appl. Mech. 63, 162–167 (1996)

    Article  Google Scholar 

  28. Chen Y., Du J., Wang J., Yang J.: Shear-horizontal waves in a rotated Y-cut quartz plate with an imperfectly bonded mass layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 616–622 (2011)

    Article  Google Scholar 

  29. Abdalla A.N., Alsheikh F., AlHossain A.Y.: Effect of initial stresses on dispersion relation of transverse waves in a piezoelectric layered cylinder. Mat. Sci. Eng. B-Solod. 162, 147–154 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Jin, F. The anti-plane vibration of a quartz plate with an additional partial non-uniform mass layer for acoustic wave sensing. Acta Mech 224, 1397–1414 (2013). https://doi.org/10.1007/s00707-013-0812-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0812-7

Keywords

Navigation