Skip to main content
Log in

Couette flow in channels with wavy walls

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Three–dimensional Couette flows enclosed by a plane and by a wavy wall are addressed; the wave amplitude is proportional to the mean clearance of the channel multiplied by a small dimensionless parameter ɛ. A perturbation expansion in terms of the powers of ɛ of the full steady Navier–Stokes equations yields a cascade of boundary value problems which are solved at each step in closed form. The supremum value of ɛ for which the expansion converges, is determined as a function of the Reynolds number \(\mathcal{R}e\) The analytical-numerical algorithm is applied to compute the velocity in the channel to O4). Even in the first order approximation O(ɛ), new results are obtained which complement the triple deck theory and its modifications. In particular, the incipient separation–detachment is discussed using the Prandtl-Schlichting criterion of starting eddies. The value ɛ e for which eddies start in the channel, is analytically deduced as a function of \(\mathcal{R}e\) as well as analytical formulas for the coordinates of the separation points. These analytical formulas show that ɛ e in 3D channels is always less than ɛ e in 2D channels. For non-smooth channels, a criterion of infinitesimally small ɛ e is deduced. The critical value of ɛ up to which bifurcation of the solutions can occur is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, P. M.: Porous media. Geometry and transport. Butterworth-Heinemann 1992

  2. Adler, P. M., Thovert, J.-F.: Fractures and fracture networks. Butterworth-Heinemann 1999

  3. Baker G. A. (1996). Padé approximants. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Carslaw H. S. (1950). An introduction to the theory of Fourier's series and integrals. Dover, New York

    Google Scholar 

  5. Bowles R. I., Davis C. and Smith F. T. (2003). On the spiking stages in deep transition and unsteady separation. J. Engng. Math. 45: 227–245

    Article  MATH  Google Scholar 

  6. Dyachenko A. V. and Shkalikov A. A. (2002). On a model problem for Orr–Sommerfeld equation with linear profile. Funkt Analiz i Prilozh 36: 71–75, (russian)

    Article  MathSciNet  Google Scholar 

  7. Floryan J. M. (2003). Vortex instability in a diverging-converging channel. J. Fluid Mech. 482: 17–50

    Article  MathSciNet  MATH  Google Scholar 

  8. Hinch E. J. (1991). Perturbation methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Kouakou K. K. J. and Lagrée P.-Y. (2006). Evolution of a model dune in a shear flow. Euro. J. Mech. B/Fluids 25: 348–359

    Article  MATH  Google Scholar 

  10. Lagrée P.-Y. and Lorthois S. (2005). The RNS/Prandtl equations and their link with other asymptotic descriptions. Application to the computation of the maximum value of the Wall Shear Stress in a pipe. Int. J. Engng. Sci. 43: 352–378

    Article  Google Scholar 

  11. Lagrée P.-Y., Berger E., Deverge M., Vilain C. and Hirschberg A. (2005). Characterization of the pressure dropin a 2D symmetric pipe: some asymptotical, numerical and experimental comparisons. Z. Angew. Math. Mech. 85: 141–146

    Article  MATH  Google Scholar 

  12. Lagrée P.-Y. (2003). A triple deck model of ripple formation and evolution. Phys. Fluids 15: 2355–2368

    Article  MathSciNet  Google Scholar 

  13. Landau L. D. and Lifshitz E. M. (1986). Theoretical physics. Nauka, Moscow

    Google Scholar 

  14. Leneweit G. and Auerbach D. (1999). Detachment phenomena in low Reynolds number flows through sinusoidally constricted tubes. J. Fluid Mech. 387: 129–150

    Article  MATH  Google Scholar 

  15. Moffat H. K. (1964). Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18: 1–18

    Article  Google Scholar 

  16. Malevich A. E., Mityushev V. V. and Adler P. M. (2006). Stokes flow through a channel with wavy walls. Acta Mech. 182: 151–182

    Article  MATH  Google Scholar 

  17. Munson B. R., Rangwalla A. A. and Mann J. A. III (1985). Low Reynolds number circular Couette flow past a wavy wall. Phys. Fluids 28: 2679–2686

    Article  Google Scholar 

  18. Olver F. W. J. (1974). Asymptotic and special functions. Academic Press, NY

    Google Scholar 

  19. Pozrikidis C. (1987). Creeping flow in two-dimensional channel. J. Fluid Mech. 180: 495–514

    Article  Google Scholar 

  20. Rothmayer, A. F., Smith, F. T.: Incompressible triple-deck theory, free interactions and breakaway separation. In Handbook on fluid mechanics, CRC Press 1998

  21. Savin D. J., Smith F. T. and Allen T. (1999). Transition of free disturbances in inflectional flow over an isolated surface roughness. Proc. R. Soc. Lond. A 455: 491–541

    MathSciNet  MATH  Google Scholar 

  22. Schlichting, H., Gersten, K.: Boundary-layer theory, 8th ed. Springer Verlag 2000. Corr. 2nd printing 2003

  23. Schmid, P. J., Henningson, D. S.: Stability and transition in shear flows. Springer Verlag 2001

  24. Scholle M., Wierschem A. and Aksel N. (2004). Creeping films with vortices over strongly undulated channel. Acta Mech. 168: 167–193

    Article  MATH  Google Scholar 

  25. Scholle M. (2004). Creeping Couette flow over an undulated plate. Arch. Appl. Mech. 73: 823–840

    Article  MATH  Google Scholar 

  26. Scholle, M.: Hydrodynamical modelling of lubricant friction between rough surfaces. Tribol. Int. Available online (2006)

  27. Scholle M., Rund A. and Aksel N. (2006). Drag reduction and improvement of material transport in creeping films. Arch. Appl. Mech. 75: 93–112

    Article  MATH  Google Scholar 

  28. Skjetne E. and Auriault J.-L. (1999). New insights on steady, non-linear flow in porous medium. Eur. J. Mech. B/Fluid 18: 131–145

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith F. T. (1976). Flow through constricted or dilated pipes and channels: Part 1. Quart. J. Mech. Appl. Math. 29: 343–364

    Article  MATH  Google Scholar 

  30. Smith F. T. (1976). Flow through constricted or dilated pipes and channels: Part 2. Quart. J. Mech. Appl. Math. 29: 365–3376

    Article  MATH  Google Scholar 

  31. Smith F. T. (1977). A two-dimensional boundary layer encountering a three-dimensional hump. J. Fluid Mech. 83: 163–176

    Article  MATH  Google Scholar 

  32. Smith F. T. (1978). Flow through symmetrically constricted tubes. J. Inst. Math. Appl. 31: 473–479

    Google Scholar 

  33. Smith F. T. (1979). The separating flow through a severely constricted symmetric tube. J. Fluid Mech. 90: 725–754

    Article  MathSciNet  MATH  Google Scholar 

  34. Smith F. T. and Walton A. G. (1998). Flow past a two- or three-dimensional steep-edged roughness. Proc. R. Soc. Lond. A 454: 31–69

    MathSciNet  MATH  Google Scholar 

  35. Smith F. T. (2000). On physical mechanism in two- and three-dimensional separations. Phil. Trans. R. Soc. Lond. A 358: 3091–3111

    Article  MATH  Google Scholar 

  36. Sobey I. J. (1980). On the flow through furrowed channel, Part 1: Calculated flow patterns. J. Fluid Mech. 96: 1–26

    Article  MATH  Google Scholar 

  37. Sobey, J.: Introduction to interactive boundary layer theory. Oxford University Press 2000

  38. Stephanoff K. D., Sobey J. and Bellhouse J. (1980). On flow through furrowed channels. Part 2. Observed flow patterns. J. Fluid Mech. 96: 27–39

    Article  MATH  Google Scholar 

  39. Stewartson K. (1974). Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14: 145–239

    Google Scholar 

  40. Sychev, V. V.: On laminar separation, “News of the USSR Academy of Sciences”, “Fluid and Gas Mechanics” (1972)

  41. Sychev V. V., Ruban A. I., Sychev V. V. and Korolev G. L. (1998). Asymptotic theory of separated flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  42. Sisavath S., Al-Yaarubi A., Pain C. C. and Zimmerman R. W. (2003). A simple model for deviations from the cubic law for a fracture undergoing dilatation or closure. Pure Appl. GeoPhys. 14: 1009–1022

    Article  Google Scholar 

  43. Wierschem A., Scholle M. and Aksel N. (2003). Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys. Fluids 15: 426–435

    Article  MathSciNet  Google Scholar 

  44. Wu, J. Z., Ma, H. Y., Zhou, M. D.: Vorticity and vortex dynamics. Springer-Verlag 2006

  45. Zouh H., Martinuzzi J. C., Khayat R. E., Straatman A. G. and Abu-Ramadan E. (2003). Influence of wall shape on vortex formation in modulated channel flow. Phys. Fluids 15: 3114–3133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre M. Adler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malevich, A.E., Mityushev, V.V. & Adler, P.M. Couette flow in channels with wavy walls. Acta Mech 197, 247–283 (2008). https://doi.org/10.1007/s00707-007-0507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0507-z

Keywords

Navigation