Skip to main content
Log in

Dissecting the nature of halogen bonding interactions from energy decomposition and wavefunction analysis

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Halogen-bonded complexes: CF3X···A(CH3)n where X = Cl, Br, I; A = N, P or O, S; n = 0, 1, 2, 3 are investigated through the total energy decomposition analysis (EDA), quantum theory of atoms in molecules (QTAIM). QTAIM results show that the closed-shell interactions are characteristic of a halogen bond. EDA results indicate the predominant role of the exchange–correlation energy rather than the electrostatic potential; compared with the electrostatic potential, the steric energy makes less important contributions to the total interaction energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  2. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114

    Article  CAS  Google Scholar 

  3. Shirman T, Arad T, Milko EB (2010) Angew Chem Int Ed 49:926

    Article  CAS  Google Scholar 

  4. Zordan F, Brammer L, Sherwood P (2005) J Am Chem Soc 127:5979

    Article  CAS  Google Scholar 

  5. Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci USA 104:6188

    Article  CAS  Google Scholar 

  6. Yamamoto HM, Kosaka YR, Maeda JI, Yamaura AN, Nakamura T, Kato R (2008) ACS Nano 2:143

    Article  CAS  Google Scholar 

  7. Sun A, Lauher JW, Goroff NS (2006) Science 312:1030

    Article  CAS  Google Scholar 

  8. Voth AR, Khuu P, Oishi K, Ho PS (2009) Nat Chem 1:74

    Article  CAS  Google Scholar 

  9. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) J Med Chem 52:2854

    Article  CAS  Google Scholar 

  10. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314

    Article  CAS  Google Scholar 

  11. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85:1711

    Article  CAS  Google Scholar 

  12. Lu YX, Li HY, Zhu X, Zhu WL, Liu HL (2011) J Phys Chem A 115:4467

    Article  CAS  Google Scholar 

  13. Bouchmella K, Boury B, Dutremez SG, van der Lee A (2007) Chem Eur J 13:6130

    Article  CAS  Google Scholar 

  14. Legon AC (2008) Struct Bond (Berlin) 126:17

    Article  CAS  Google Scholar 

  15. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291

    Article  CAS  Google Scholar 

  16. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033

    Article  CAS  Google Scholar 

  17. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305

    Article  CAS  Google Scholar 

  18. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232

    Article  CAS  Google Scholar 

  19. Romaniello P, Lelj F (2002) J Phys Chem A 106(91):14

    Google Scholar 

  20. Stone AJ (2013) J Am Chem Soc 135:7005

    Article  CAS  Google Scholar 

  21. Grabowski SJ (2011) J Phys Chem A 115:12340

    Article  CAS  Google Scholar 

  22. Grabowski SJ (2013) Phys Chem Chem Phys 15:7249

    Article  CAS  Google Scholar 

  23. Grabowski SJ (2013) J Mol Model 19:4713

    Article  CAS  Google Scholar 

  24. Wang W, Hobza P (2008) J Phys Chem A 112:4114

    Article  CAS  Google Scholar 

  25. Wang W, Zhang Y, Ji B (2010) J Phys Chem A 114:7257

    Article  CAS  Google Scholar 

  26. Bader RFW (1990) Atoms in molecules: a quantum theory. The International Series of Monographs on Chemistry, no. 22. Oxford University Press, New York

    Google Scholar 

  27. Alkorta I, Rozas I, Elguero J (1998) J Phys Chem A 102:9278

    Article  CAS  Google Scholar 

  28. Lu YX, Zou JW, Wang YH, Jiang YJ, Yu QS (2007) J Phys Chem A 111:10781

    Article  CAS  Google Scholar 

  29. Grabowski SJ (2012) J Phys Chem A 116:1838

    Article  CAS  Google Scholar 

  30. Forni A (2009) J Phys Chem A 113:3403

    Article  CAS  Google Scholar 

  31. Wang W (2011) J Phys Chem A 115:9294

    Article  CAS  Google Scholar 

  32. Syzgantseva OA, Tognetti V, Joubert L (2013) J Phys Chem A 117:8969

    Article  CAS  Google Scholar 

  33. Pinter B, Nagels N, Herrebout WA, Proft FD (2013) Chem Eur J 19:519

    Article  CAS  Google Scholar 

  34. Liu SB (2007) J Chem Phys 126:244103

    Article  Google Scholar 

  35. Parr RG, Yang W (1989) Density-Functional theory of atoms and molecules. Clarendon Press, Oxford

    Google Scholar 

  36. Zhao DB, Rong CY, Jenkins S, Kirk SR, Yin DL, Liu SB (2013) Acta Phys Chim Sin 29:43

    CAS  Google Scholar 

  37. Liu SB (2013) J Phys Chem A 117:962

    Article  CAS  Google Scholar 

  38. Zhong AG, Chen D, Li RR (2015) Chem Phys Lett 633:265

    Article  CAS  Google Scholar 

  39. Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103

    Article  Google Scholar 

  40. Cremer D, Kraka E (1984) Croat Chem Acta 57:1265

    Google Scholar 

  41. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  42. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

  43. Keith TA, Gristmill TK (2012) AIMAll (Version 11.08.23) Software. Overland Park KS, USA

    Google Scholar 

  44. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, VanDam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, DeJong WA (2010) Comput Phys Commun 181:1477

    Article  CAS  Google Scholar 

  45. Kendall RA, Dunning THJ, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  46. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  47. Grabowski SJ (2006) Annu Rep Prog Chem Sect C 102:131

    Article  CAS  Google Scholar 

  48. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2010) Molpro, A Package of Ab Initio Programs, version 2010

  49. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2008) NBO version 5.0

  50. Weinhold F, Landis C (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, UK

    Book  Google Scholar 

Download references

Acknowledgements

The authors are also grateful to the Project supported by the Natural Science Foundation of Zhejiang Province, P. R. China (LY15B030001) and Chemical Engineering and Technology of Zhejiang Province First-Class Discipline (Taizhou University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Ai-Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai-Guo, Z. Dissecting the nature of halogen bonding interactions from energy decomposition and wavefunction analysis. Monatsh Chem 148, 1259–1267 (2017). https://doi.org/10.1007/s00706-017-1937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1937-5

Keywords

Navigation