Skip to main content
Log in

The permeation of potassium and chloride ions through nanotubes: a molecular simulation study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The permeation of K+ and Cl ions across (7,7) and (8,8) carbon and boron nitride nanotubes was studied by the molecular dynamics simulation method. The simulated systems consist of a carbon or boron nitride nanotubes inserted in a silicon nitride membrane immersed in an aqueous ionic solution. The considered nanotubes were fixed in a silicon–nitride membrane and an external electrical field was applied on the systems along the axis of the nanotubes. Some of the simulated properties including the ionic current, the water structure inside the nanotubes, the retention time of the ions, ion-water radial distribution functions, numbers of hydrogen bonds, density of water molecules inside the nanotube, and the normalized transport rate of water with respect to the number of transported ions were calculated. The results show that the permeation of ions across the nanotubes is dependent on the diameter of the considered nanotubes and the applied electrical field. We find that the (7,7) and (8,8) nanotubes are exclusively selective to ions. A (7,7) nanotube can selectively conduct K+ ions. In contrast, a (8,8) nanotube can selectively conduct Cl ions. By calculating the potential of mean force for ions, we show that K+ and Cl ions face a large energy barrier and will not pass through the (8,8) and (7,7) nanotubes. Hence, based on the present study, these systems can be suggested as preliminary models for ion-channels and water desalinating devices because they broadly mimic some of the permeation characteristics of gramicidin and chloride channels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Samson MS, Biggin PC (2001) Nature 414:156

    Article  Google Scholar 

  2. Chan Y, Hill JM (2013) J Math Chem 51:1258

    Article  Google Scholar 

  3. Walther JH, Ritos K, Cruz E, Megaridis CM (2013) Nano Lett 13:1910

    Article  CAS  Google Scholar 

  4. Krishnakumar P, Tiwari PB (2012) Nanotechnology 23:455101

    Article  CAS  Google Scholar 

  5. Hummerr G, Rasaiah JC, Noworyta JP (2001) Nature 414:188

    Article  Google Scholar 

  6. Steinle ED, Mitchell DT, Wirtz M (2002) Anal Chem 74:2416

    Article  CAS  Google Scholar 

  7. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  8. Baughman RH, Zakhidev A, Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  9. Choi SJ, Bennett P, Takei K, Wang C (2013) ACS Nano 7:798

    Article  CAS  Google Scholar 

  10. Song W, Pang P, He J (2013) ACS Nano 7:689

    Article  CAS  Google Scholar 

  11. Hilder T, Pace R, Chung SH (2012) Sensors 12:13720

    Article  CAS  Google Scholar 

  12. Rubio A, Corkill JL, Cohen ML (1994) Phys Rev B Condens Matter Mater Phys 49:5081

    Article  CAS  Google Scholar 

  13. Chopra NG, Luyken RG, Cherrey K, Crespi V (1995) Science 269:966

    Article  CAS  Google Scholar 

  14. Loiseau A, Willaime F, Demoncy N, Hug G (1996) Phys Rev Lett 76:4737

    Article  CAS  Google Scholar 

  15. Goldberg D, Bando Y, Han Y, Kurashima K, Sato T (1999) Chem Phys Lett 308:337

    Article  Google Scholar 

  16. Han WQ, Fan SS (1997) Science 277:1287

    Article  CAS  Google Scholar 

  17. Goldberg D, Bando Y, Bourgeois L, Han Y, Kurashima K, Sato T (2000) Appl Phys Lett 77:1979

    Article  Google Scholar 

  18. Lan HP, Ye LH, Zhang SA (2009) Appl Phys Lett 94:183110

    Article  Google Scholar 

  19. Chopra NG, Zettl A (1998) Solid State Commun 105:297

    Article  CAS  Google Scholar 

  20. Lee CH, Drelich J, Yap YK (2009) Langmuir 25:4853

    Article  CAS  Google Scholar 

  21. Wu JB, Zhang WY (2009) Solid State Commun 149:486

    Article  CAS  Google Scholar 

  22. Saha S, Muthu DVS, Golberg D, Tang C (2006) Chem Phys Lett 421:86

    Article  CAS  Google Scholar 

  23. Golberg D, Bando Y, Kurashima K, Sato T (2001) Scripta Mater 44:1561

    Article  CAS  Google Scholar 

  24. Zettl A, Chang CW, Begtrup G (2007) Phys Status Solidi B 244:4181

    Article  CAS  Google Scholar 

  25. Lu T, Ting AY, Mainland J, Yang J (2001) Nature Neurosci 4:239

    Article  CAS  Google Scholar 

  26. Åqvist J, Luzhkov V (2000) Nature 404:881

    Article  Google Scholar 

  27. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) Science 280:69

    Article  CAS  Google Scholar 

  28. Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter BG Jr, Hurd AJ, Brinker CJ (2000) Science 290:107

    Article  CAS  Google Scholar 

  29. Stein D, Kruithof M, Dekker C (2004) Phys Rev Lett 93:035901

    Article  Google Scholar 

  30. Leung K, Rempe S, Lorenz C (2006) Phys Rev Lett 96:095504

    Article  Google Scholar 

  31. Holt JK, Noy A, Huser T (2004) Nano Lett 4:2245

    Article  CAS  Google Scholar 

  32. Andersen OS, Koeppe RE, Roux B (2007) Biological membrane ion channels: dynamics, structure, and application. Springer, New York, p 33

  33. Kuyucak S, Andersen OS, Chung SH (2001) Rep Prog Phys 64:1427

    Google Scholar 

  34. Corry B, O’Mara M, Chung SH (2004) Biophys J 86:846

  35. Bastug T, Kuyucak S (2006) Chem Phys Lett 424:82

    Google Scholar 

  36. Bastug T, Kuyucak S (2006) Biophys J 90:3941

  37. Schmidt MW, Baldridge KK (1993) J Comput Chem 14:1347

    Google Scholar 

  38. Mashl RJ, Joseph S, Aluru NR (2003) Nano Lett 3:589

  39. Won CY, Aluru NR (2007) J Am Chem Soc 129:2748

    Google Scholar 

  40. Won CY, Aluru NR (2008) J Phys Chem C 112:1812

    Google Scholar 

  41. Youngseon S, Youn JJ, Kim H (2011) Phys Chem Chem Phys 13:3969

    Google Scholar 

  42. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283

    Google Scholar 

  43. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33

    Google Scholar 

  44. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Karplus M (1983) J Comput Chem 4:187

    Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Klein ML (1983) J Chem Phys 79:926

    Google Scholar 

  46. Grossfield A (2013) http://membrane.urmc.rochester.edu/Software/WHAM/WHAM.html

Download references

Acknowledgments

This research has been supported by Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Azamat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azamat, J., Sardroodi, J.J. The permeation of potassium and chloride ions through nanotubes: a molecular simulation study. Monatsh Chem 145, 881–890 (2014). https://doi.org/10.1007/s00706-013-1136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1136-y

Keywords

Navigation