Skip to main content
Log in

Study of ellagic acid electro-oxidation mechanism

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ellagic acid is a biologically active polyphenol found in numerous fruits and vegetables. However, not many papers dealing with the electrochemical properties and protolytic equilibria of ellagic acid have been published so far. The electro-oxidation mechanism of ellagic acid was studied in methanol aqueous media (1:1, v/v) within the pH range of 1.5–9.0, t = 25 ± 1 °C, using cyclic voltammetry on a glassy carbon electrode, and by semiempirical calculations. Results show that oxidation of ellagic acid is a pH-dependent, two-step quasireversible process. The slope of peak 1 indicates the exchange of the same number of electrons and protons within the whole studied pH range; the slope of peak 2 changes with the increase of pH, and three different regions are visible. As protolytic equilibria studies revealed that ellagic acid acts as a diprotic acid in the studied conditions (acidity constants were potentiometrically determined as pK a1 = 5.42 ± 0.01 and pK a2 = 6.76 ± 0.01), it is obvious that the electro-oxidation occurs at the hydroxyl group subjected to dissociation. The three different regions are therefore recognized as regions with different dominating species: unionized molecule (H4A), monoanion (H3A), and dianion (H2A2−). UV/Vis spectral changes confirmed the proposed equilibria. Heat of formation and electron densities calculated at semiempirical level were used to propose the hydrogen and electron abstraction sites. According to the obtained results, a new mechanism of ellagic acid electro-oxidation is proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Zafrilla P, Ferreres F, Tomás-Barberán A (2001) J Agric Food Chem 49:3651

    Article  CAS  Google Scholar 

  2. Da Silva Pinto M, Lajolo FM, Genovese MI (2008) Food Chem 107:1629

    Article  Google Scholar 

  3. Lee JH, Talcott ST (2004) J Agric Food Chem 52:361

    Article  CAS  Google Scholar 

  4. Williner MR, Pirovani ME, Güemes DR (2003) J Sci Food Agric 83:842

    Article  CAS  Google Scholar 

  5. Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Food Res Int 32:345

    Article  Google Scholar 

  6. Loarca-Pina G, Kuzmicky PA, de Mejía EG, Kado NY, Hsieh DPH (1996) Mutat Res. Environ Mutagen Relat Subj 360:15

    Article  CAS  Google Scholar 

  7. Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) J Agric Food Chem 50:2200

    Article  CAS  Google Scholar 

  8. Rogerio AP, Fontanari C, Borducchi É, Keller AC, Russo M, Soares EG, Albuquerque DA, Faccioli LH (2008) Eur J Pharmacol 580:262

    Article  CAS  Google Scholar 

  9. Malini P, Kanchana G, Rajadurai M (2011) Asian J Pharm Clin Res 4:124

    Google Scholar 

  10. Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F (2009) Antimicrob Agents Chemother 53:1100

    Article  CAS  Google Scholar 

  11. Pari L, Sivasankari R (2008) Fundam Clin Pharmacol 22:395

    Article  CAS  Google Scholar 

  12. Kannan MM, Quine SD (2011) Eur J Pharmacol 659:45

    Article  CAS  Google Scholar 

  13. Edderkaoui M, Odinokova I, Ohno I, Gukovsky I, Go VLW, Pandol SJ, Gukovskaya AS (2008) World J Gastroenterol 14:3672

    Article  CAS  Google Scholar 

  14. Khanduja KL, Gandhi RK, Pathania V, Syal N (1999) Food Chem Toxicol 37:313

    Article  CAS  Google Scholar 

  15. Umesalma S, Sudhandiran G (2011) Eur J Pharmacol 660:249

    Article  CAS  Google Scholar 

  16. Yüce A, Ateşşahin A, Çeribaşi AO (2008) Basic Clin Pharmacol Toxicol 103:186

    Article  Google Scholar 

  17. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  18. Vafiadis AP, Bakalbassis EG (2005) Chem Phys 316:195

    Article  CAS  Google Scholar 

  19. Musialik M, Litwinienko G (2005) Org Lett 7:4951

    Article  CAS  Google Scholar 

  20. Zhang J, Xiong Y, Peng B, Gao H, Zhou Z (2011) Comp Theor Chem 963:148

    Article  CAS  Google Scholar 

  21. Ghoreishi SM, Behpour M, Khayatkashani M, Motaghedifard MH (2011) Dig J Nanomater Bios 6:625

    Google Scholar 

  22. Ghoreishi SM, Behpour M, Khayatkashani M, Motaghedifard MH (2011) Anal Methods 3:636

    Article  CAS  Google Scholar 

  23. Thakur K, Pitre KS (2008) J Chin Chem Soc 55:143

    CAS  Google Scholar 

  24. Cuartero M, Ortuño JA, Truchado P, García MS, Tomás-Barberán FA, Albero MI (2011) Food Chem 128:549

    Article  CAS  Google Scholar 

  25. Komorsky-Lovrić Š, Novak I (2011) J Food Sci 76:C916

    Article  Google Scholar 

  26. Komorsky-Lovrić Š, Novak I (2011) Int J Electrochem Sci 6:4638

    Google Scholar 

  27. Bala I, Bhardwaj V, Hariharan S, Ravi Kumar MNV (2006) J Pharm Biomed Anal 40:206

    Article  CAS  Google Scholar 

  28. Hasegawa M, Terauchi M, Kikuchi Y, Nakao A, Okubo J, Yoshinaga T, Hiratsuka H, Kobayashi M, Hoshi T (2003) Monatsh Chem 134:811

    Article  CAS  Google Scholar 

  29. Muñoz-Muñoz JL, Garcia-Molina F, Garcia-Molina M, Tudela J, García-Cánovas F, Rodriguez-Lopez JN (2009) IUBMB Life 61:171

    Article  Google Scholar 

  30. Queimada AJ, Mota FL, Pinho SP, Macedo EA (2009) J Phys Chem B 113:3469

    Article  CAS  Google Scholar 

  31. Albert A, Serjeant EP (1971) The determination of ionization constants, 2nd edn. Chapman and Hall, London

    Google Scholar 

  32. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739

    Article  CAS  Google Scholar 

  33. Stewart JJP (1990) J Comput Aid Mol Des 4:1

    Article  Google Scholar 

  34. Stewart JJP (2007) MOPAC 2007, Stewart computational chemistry, Colorado Springs, CO. http://OpenMOPAC.net Accessed 28 March 2012

  35. Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Ministry of Education and Science of Serbia supports this work (grants 172030 and 172035). The reported computational work makes use of results produced by the High-Performance Computing Infrastructure for South East Europe’s Research Communities (HP-SEE), a project cofunded by the European Commission (under contract number 261499) through the Seventh Framework Programme HP-SEE (http://www.hp-see.eu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Ž. Verbić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simić, A.Z., Verbić, T.Ž., Sentić, M.N. et al. Study of ellagic acid electro-oxidation mechanism. Monatsh Chem 144, 121–128 (2013). https://doi.org/10.1007/s00706-012-0856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0856-8

Keywords

Navigation