Skip to main content
Log in

Determination of molybdenum in biological samples by flame atomic spectrometry after preconcentration on activated carbon

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Molybdenum is well known for its toxic effects, although it is also essential for N2-fixing cyanobacteria and several enzymes. This study proposes a simple and accurate procedure for separation, preconcentration, and determination of trace amounts of molybdenum in biological samples by flame atomic absorption spectrometry. It is based on complexation of Mo by cupferron and sorption onto activated carbon. Effects of parameters such as pH, stirring time, and amounts of activated carbon and cupferron on recovery were examined. The results demonstrated that Mo at pH range of 2.5–3.5 was quantitatively sorbed onto activated carbon as its cupferron complex. The optimum stirring time was found to be 30 min. The relative standard deviation was found to be 12% for 200 cm3 50 ng/cm3 Mo using 10 replicate preconcentration procedures. The limits of detection and quantification were found to be 1.0 and 3 ng/cm3, respectively, by preconcentration of 200 cm3 initial sample to 2 cm3 final volume. As a result, an enrichment factor of 100-fold was achieved. The proposed preconcentration procedure was applied to determine Mo in biological samples such as vegetables, milk, and animal liver. The molybdenum concentrations were found (as μg/dm3 or μg/kg) in the range of 70–5,500 for plants, 3–124 for milk and milk powder, and 960 for liver samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vyskocil A, Viau C (1999) J Appl Toxicol 19:185

    Article  CAS  Google Scholar 

  2. Seifert M, Dorn W, Muller R, Holzinger S, Anke M (2009) Acta Aliment Hung 38:471

    Article  CAS  Google Scholar 

  3. Pyrzynska K (2007) Anal Chim Acta 590:40

    Article  CAS  Google Scholar 

  4. Patriarca M, Menditto A, Di Felice G, Petrucci F, Caroli S, Merli M, Valente C (1998) Microchem J 59:194

    Article  CAS  Google Scholar 

  5. Holzinger S, Anke M, Rohrig B, Gonzalez D (1998) Analyst 123:447

    Article  CAS  Google Scholar 

  6. Das AK, Chakraborty R, Cervera ML, de la Guardia M (2007) Talanta 71:987

    Article  CAS  Google Scholar 

  7. Madrakian T, Ghazizadeh F (2008) J Hazard Mater 153:695

    Article  CAS  Google Scholar 

  8. Lopez-Garcia I, Vinas P, Romero-Romero R, Hernandez-Cordoba M (2007) Anal Chim Acta 597:187

    Article  CAS  Google Scholar 

  9. Agrawal YK, Sharma KR (2005) Talanta 67:112

    Article  CAS  Google Scholar 

  10. dos Santos HC, Korn MGA, Ferreira SLC (2001) Anal Chim Acta 42:79

    Article  Google Scholar 

  11. Burguera JL, Burguera M, Rondon C (2002) Talanta 58:1167

    Article  CAS  Google Scholar 

  12. Jiang C, Wang J, He F (2001) Anal Chim Acta 439:307

    Article  CAS  Google Scholar 

  13. Yigmatepe E, Avci H, Yaman M (2010) Asian J Chem 22:1829

    CAS  Google Scholar 

  14. Felipe-Sotelo M, Carlosena A, Fernandez-Fernandez E, Muniategui S, Lopez-Mahıa P, Prada D (2004) Anal Chim Acta 524:329

    Article  CAS  Google Scholar 

  15. Gil RA, Pasini-Cabell S, Takara A, Smichowski P, Olsina RA, Martinez LD (2007) Microchem J 86:156

    Article  CAS  Google Scholar 

  16. Ensafi AA, Khayamian T, Atabati M (2002) Talanta 57:785

    Article  CAS  Google Scholar 

  17. Jiao K, Jin W, Metzner H (2001) Anal Chim Acta 260:35

    Article  Google Scholar 

  18. Senkal BF, Ince M, Yavuz E, Yaman M (2007) Talanta 72:962

    Article  CAS  Google Scholar 

  19. Kaya G, Yaman M (2008) Talanta 75:1127

    Article  CAS  Google Scholar 

  20. Comitre ALD, Reis BF (2003) Anal Chim Acta 479:185

    Article  CAS  Google Scholar 

  21. Zaijun L, Yuling Y, Jian T, Jiaomai P (2005) J Food Compos Anal 18:561

    Article  Google Scholar 

  22. Lavado RS, Porcelli CA, Alvarez R (2001) Soil Till Res 62:55

    Article  Google Scholar 

  23. Koplik R, Borkova M, Mestek O, Kominkova J, Suchanek M (2002) J Chromatogr B 775:179

    Article  CAS  Google Scholar 

  24. Wappelhorst O (2002) Nutrition 18:317

    Article  Google Scholar 

  25. Zou X, Li Y, Li M, Zheng B, Yang J (2004) Talanta 62:719

    Article  CAS  Google Scholar 

  26. Avci H, Yaman M (2006) At Spectrosc 27:117

    CAS  Google Scholar 

  27. Yaman M (1998) Microchim Acta 129:115

    Article  CAS  Google Scholar 

  28. Kaya G, Akdeniz I, Yaman M (2008) At Spectrosc 29:150

    CAS  Google Scholar 

  29. Yaman M, Ince M (2008) At Spectrosc 27:186

    Google Scholar 

  30. Yaman M, Gucer S (1995) Analusis 23:168

    CAS  Google Scholar 

  31. Gucer S, Yaman M (1992) J Anal At Spectrom 7:179

    Article  CAS  Google Scholar 

  32. Yaman M (2001) Spectrosc Lett 34:763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific Investigate Projects of Firat University (FUBAP-758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yigmatepe, E., Yaman, M. Determination of molybdenum in biological samples by flame atomic spectrometry after preconcentration on activated carbon. Monatsh Chem 142, 131–136 (2011). https://doi.org/10.1007/s00706-010-0442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0442-x

Keywords

Navigation