Skip to main content

Advertisement

Log in

Comprehensive identification of protein orthologs in the family Ascoviridae facilitates an understanding of phylogenomics, protein conservation, and phosphorylation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Analysis of orthology is important for understanding protein conservation, function, and phylogenomics. In this study, we performed a comprehensive analysis of gene orthology in the family Ascoviridae based on identification of 366 protein homologue groups and phylogenetic analysis of 34 non-single-copy proteins. Our findings revealed 90 newly annotated proteins, five newly identified core proteins for the family Ascoviridae, and 14 core proteins for the genus Ascovirus. A phylogenomic tree of 11 Ascoviridae members was constructed based on a concatenation of 35 of the 45 ortholog groups. In combination with phosphoproteomic results and conservation estimations, 30 conserved phosphorylation sites on 17 phosphoproteins were identified from a total of 176 phosphosites on 57 phosphoproteins from Heliothis virescens ascovirus 3h (HvAV-3h), providing potential research targets for investigating the role of these protein in the regulation of viral infection. This study will facilitate genome annotation and comparison of further Ascoviridae members as well as functional genomic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    Article  CAS  PubMed  Google Scholar 

  2. Alzohairy AM (2011) BioEdit: An important software for molecular biology. GERF Bull Biosci 2:60–61

    Google Scholar 

  3. Asgari S, Bideshi DK, Bigot Y, Federici BA, Cheng XW, Consortium IR (2017) ICTV Virus Taxonomy Profile: ascoviridae. J Gen Virol 98:4–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baldauf SL (2003) Phylogeny for the faint of heart: a tutorial. Trends Genet 19:345–351

    Article  CAS  PubMed  Google Scholar 

  5. Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22:1583–1587

    Article  CAS  PubMed  Google Scholar 

  6. Bideshi DK, Tan Y, Bigot Y, Federici BA (2005) A viral caspase contributes to modified apoptosis for virus transmission. Gene Dev 19:1416–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bigot Y, Renault S, Nicolas J, Moundras C, Demattei MV, Samain S, Bideshi DK, Federici BA (2009) Symbiotic virus at the evolutionary intersection of three types of large DNA viruses; iridoviruses, ascoviruses, and ichnoviruses. PLoS ONE 4(e6397):4

    Google Scholar 

  8. Bretana NA, Lu CT, Chiang CY, Su MG, Huang KY, Lee TY, Weng SL (2012) Identifying protein phosphorylation sites with kinase substrate specificity on human viruses. PLoS ONE 7:e40694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carner GR, Hudson JS (1983) Histopathology of virus-like particles in Heliothis Spp. J Invertebr Pathol 41:238–249

    Article  Google Scholar 

  10. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  12. Chen G, Liu H, Mo BC, Hu J, Liu SQ, Bustos-Segura C, Xue J, Wang X (2020) Growth and Development of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae infected by Heliothis virescens ascovirus 3i (HvAV-3i). Front Physiol 11:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen ZS, Cheng XW, Wang X, Hou DH, Huang GH (2019) Proteomic analysis of the Heliothis virescens ascovirus 3i (HvAV-3i) virion. J Gen Virol 100:301–307

    Article  CAS  PubMed  Google Scholar 

  14. Donofrio G, Martignani E, Sartori C, Vanderplasschen A, Cavirani S, Flammini CF, Gillet L (2007) Generation of a transposon insertion mutant library for bovine herpesvirus 4 cloned as a bacterial artificial chromosome by in vitro MuA based DNA transposition system. J Virol Methods 141:63–70

    Article  CAS  PubMed  Google Scholar 

  15. Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F (2003) Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100:14223–14228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238

    Article  PubMed  PubMed Central  Google Scholar 

  17. Federici B (2003) Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps. J Insect Physiol 49:419–432

    Article  CAS  PubMed  Google Scholar 

  18. Ba F, Vlak JM, Hamm JJ (1990) Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol 71:1661–1668

    Article  Google Scholar 

  19. Fitch WM (2000) Homology: a personal view on some of the problems. Trends Genet 16:227–231

    Article  CAS  PubMed  Google Scholar 

  20. Gabaldon T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nat Rev Genet 14:360–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garavaglia MJ, Miele SAB, Iserte JA, Belaich MN, Ghiringhelli PD (2012) The ac53, ac78, ac101, and ac103 genes are newly discovered core genes in the family baculoviridae. J Virol 86:12069–12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39:D253-260

    Article  CAS  PubMed  Google Scholar 

  23. Guo Y, Yue Q, Gao J, Wang Z, Chen YR, Blissard GW, Liu TX, Li Z (2017) Roles of cellular NSF protein in entry and nuclear egress of budded virions of autographa californica multiple nucleopolyhedrovirus. J Virol 91:e01111-e1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hellmuth M, Wieseke N, Lechner M, Lenhof HP, Middendorf M, Stadler PF (2015) Phylogenomics with paralogs. Proc Natl Acad Sci U S A 112:2058–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hitchman RB, Locanto E, Possee RD, King LA (2011) Optimizing the baculovirus expression vector system. Methods 55:52–57

    Article  CAS  PubMed  Google Scholar 

  26. Hou D, Zhang L, Deng F, Fang W, Wang R, Liu X, Guo L, Rayner S, Chen X, Wang H, Hu Z (2013) Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J Virol 87:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang GH, Hou DH, Wang M, Cheng XW, Hu Z (2017) Genome analysis of Heliothis virescens ascovirus 3h isolated from China. Virol Sin 32:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hussain M, Abraham AM, Asgari S (2010) An ascovirus-encoded RNase III autoregulates its expression and suppresses RNA interference-mediated gene silencing. J Virol 84:3624–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacob T, Van den Broeke C, Favoreel HW (2011) Viral serine/threonine protein kinases. J Virol 85:1158–1173

    Article  CAS  PubMed  Google Scholar 

  30. Javed MA, Biswas S, Willis LG, Harris S, Pritchard C, van Oers MM, Donly BC, Erlandson MA, Hegedus DD, Theilmann DA (2017) Autographa californica multiple nucleopolyhedrovirus AC83 is a per Os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J Virol 91:e02115-e2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keating JA, Striker R (2012) Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol 22:166–181

    Article  CAS  PubMed  Google Scholar 

  33. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338

    Article  CAS  PubMed  Google Scholar 

  35. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  36. Li A, Zhao H, Lai Q, Huang Z, Yuan M, Yang K (2015) Posttranslational modifications of baculovirus protamine-like protein P6.9 and the significance of its hyperphosphorylation for viral very late gene hyperexpression. J Virol 89:7646–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li ZQ, Yu H, Huang GH (2018) Changes in lipid, protein and carbohydrate metabolism in Spodoptera exigua larvae associated with infection by Heliothis virescens ascovirus 3h. J Invertebr Pathol 155:55–63

    Article  CAS  PubMed  Google Scholar 

  38. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:20–25

    Article  Google Scholar 

  39. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, Sun H, Yadav JS, Pangilinan J, Larsson KH, Matsuura K, Barry K, Labutti K, Kuo R, Ohm RA, Bhattacharya SS, Shirouzu T, Yoshinaga Y, Martin FM, Grigoriev IV, Hibbett DS (2016) Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol 33:959–970

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34:2490–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ono C, Kamagata T, Taka H, Sahara K, Asano S, Bando H (2012) Phenotypic grouping of 141 BmNPVs lacking viral gene sequences. Virus Res 165:197–206

    Article  CAS  PubMed  Google Scholar 

  43. Palmberger D, Wilson IB, Berger I, Grabherr R, Rendic D (2012) SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS ONE 7:e34226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearce SL, Clarke DF, East PD, Elfekih S, Gordon KHJ, Jermiin LS, McGaughran A, Oakeshott JG, Papanicolaou A, Perera OP, Rane RV, Richards S, Tay WT, Walsh TK, Anderson A, Anderson CJ, Asgari S, Board PG, Bretschneider A, Campbell PM, Chertemps T, Christeller JT, Coppin CW, Downes SJ, Duan G, Farnsworth CA, Good RT, Han LB, Han YC, Hatje K, Horne I, Huang YP, Hughes DST, Jacquin-Joly E, James W, Jhangiani S, Kollmar M, Kuwar SS, Li S, Liu NY, Maibeche MT, Miller JR, Montagne N, Perry T, Qu J, Song SV, Sutton GG, Vogel H, Walenz BP, Xu W, Zhang HJ, Zou Z, Batterham P, Edwards OR, Feyereisen R, Gibbs RA, Heckel DG, McGrath A, Robin C, Scherer SE, Worley KC, Wu YD (2017) Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol 15:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  46. Piegu B, Asgari S, Bideshi D, Federici BA, Bigot Y (2015) Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol Phylogenet Evol 84:44–52

    Article  PubMed  Google Scholar 

  47. Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwartz D, Church GM (2010) Collection and motif-based prediction of phosphorylation sites in human viruses. Sci Signal 3:rs2

    Article  PubMed  Google Scholar 

  49. Shang Y, Wang M, Xiao G, Wang X, Hou D, Pan K, Liu S, Li J, Wang J, Arif BM, Vlak JM, Chen X, Wang H, Deng F, Hu Z (2017) Construction and rescue of a functional synthetic baculovirus. ACS Synth Biol 6:1393–1402

    Article  CAS  PubMed  Google Scholar 

  50. Smede M, Hussain M, Asgari S (2009) A lipase-like gene from Heliothis virescens ascovirus (HvAV-3e) is essential for virus replication and cell cleavage. Virus Genes 39:409–417

    Article  CAS  PubMed  Google Scholar 

  51. Sun TW, Ku C (2021) Unraveling gene content variation across eukaryotic giant viruses based on network analyses and host associations. Virus Evol 7:veab081

    Article  PubMed  PubMed Central  Google Scholar 

  52. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  53. Tan Y, Bideshi DK, Johnson JJ, Bigot Y, Ba F (2009) Proteomic analysis of the Spodoptera frugiperda ascovirus 1a virion reveals 21 proteins. J Gen Virol 90:359–365

    Article  CAS  PubMed  Google Scholar 

  54. Tan Y, Spears T, Bideshi DK, Johnson JJ, Hice R, Bigot Y, Ba F (2009) P64, a novel major virion DNA-binding protein potentially involved in condensing the Spodoptera frugiperda Ascovirus 1a genome. J Virol 83:2708–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Varga T, Krizsan K, Foldi C, Dima B, Sanchez-Garcia M, Sanchez-Ramirez S, Szollosi GJ, Szarkandi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonin V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Damon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasinski D, Kautmanova I, Kiss B, Kocsube S, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukacs Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Racz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomsovsky M, Tulloss RE, Uehling J, Grigoriev IV, Vagvolgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol 3:668–678

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vijayachandran LS, Thimiri Govinda Raj DB, Edelweiss E, Gupta K, Maier J, Gordeliy V, Fitzgerald DJ, Berger I (2013) Gene gymnastics: synthetic biology for baculovirus expression vector system engineering. Bioengineered 4:279–287

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang J, Yang ML, Xiao HB, Huang GH, Deng F, Hu ZH (2020) Genome analysis of Dasineura jujubifolia Toursvirus 2, a novel Ascovirus. Virol Sin 35:134–142

    Article  PubMed  Google Scholar 

  58. Wang LH, Li DQ, Fu Y, Wang HP, Zhang JF, Yuan ZF, Sun RX, Zeng R, He SM, Gao W (2007) pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry. Rapid Commun Mass Spectrom 21:2985–2991

    Article  CAS  PubMed  Google Scholar 

  59. Wang M, Hu Z (2020) Advances in molecular biology of Baculoviruses. Curr Issues Mol Biol 34:183–214

    Article  PubMed  Google Scholar 

  60. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27:325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiang Y, Zou Q, Zhao L (2021) VPTMdb: a viral posttranslational modification database. Brief Bioinform 22:bbaa251

    Article  PubMed  Google Scholar 

  62. Yao Q, Li H, Liu BQ, Huang XY, Guo L (2011) SUMOylation-regulated protein phosphorylation, evidence from quantitative phosphoproteomics analyses. J Biol Chem 286:27342–27349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu H, Li ZQ, He L, Ou-Yang YY, Li N, Huang GH (2018) Response analysis of host Spodoptera exigua larvae to infection by Heliothis virescens ascovirus 3h (HvAV-3h) via transcriptome. Sci Rep 8:5367

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yue Q, Yu Q, Yang Q, Xu Y, Guo Y, Blissard GW, Li Z (2018) Distinct roles of cellular ESCRT-I and ESCRT-III proteins in efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. J Virol 92:e01636-e1717

    Article  PubMed  Google Scholar 

  65. Zaghloul H, Hice R, Arensburger P, Federici BA (2017) Transcriptome analysis of the Spodoptera frugiperda ascovirus in vivo provides insights into how its apoptosis inhibitors and caspase promote increased synthesis of viral vesicles and virion progeny. J Virol 91:e874–e1817

    Article  Google Scholar 

  66. Zaghloul HAH, Hice R, Bideshi DK, Arensburger P, Federici BA (2020) Mitochondrial and innate immunity transcriptomes from Spodoptera frugiperda larvae infected with the Spodoptera frugiperda Ascovirus. J Virol 94:e01985-e2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355

    Article  PubMed  Google Scholar 

  68. Zhou FC, Gao SJ (2011) Recent advances in cloning herpesviral genomes as infectious bacterial artificial chromosomes. Cell Cycle 10:434–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the Shandong Provincial Natural Science Foundation (No. ZR2020QC014), the National Natural Science Foundation of China (No. 31872027), and the Doctoral Fund of Weifang Medical University (No. 02181801). We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WL, DH, and GH. Formal analysis: WL, YS, and DH. Writing—original draft preparation: WL, YS, PZ, and DH. Writing—review and editing: JC, DH, and GH. Revision: GW, DH, and GH. Supervision: DH and GH. Funding acquisition: DH and GH. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Guo-hua Huang or Dianhai Hou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies involving human participants or animals.

Additional information

Handling Editor: Simona Abba'.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2022_5402_MOESM1_ESM.tif

Fig. S1 Schematic diagram of the work flow for identification of homologue groups and analysis of orthology among Ascoviridae genomes (TIF 2932 KB)

705_2022_5402_MOESM2_ESM.tif

Fig. S2 Phylogenetic analysis based on alignments of complete amino acid (aa) sequences of Putative S1/P1 nuclease (HvAV-3h ORF88/ORF139) (A), HvAV-3h ORF31/ORF34 (B), HvAV-3g ORF10 (C), TnAV-6a ORF71 (D), and HR (E) homologues. Phylogenetic analysis was performed using the ML method in IQ-TREE with 1000 bootstrap replicates with a protein model of LG+I, FLU+R2, JTT, LG+G4, and JTT+R2 for Putative S1/P1 nuclease (HvAV-3h ORF88/ORF139), HvAV-3h ORF31/ORF34, HvAV-3g ORF10, TnAV-6a ORF71, and HR, respectively. The orthologous groups were identified based on a phylogenetic analysis each of homologue group. The scale bar of branch length is shown at the bottom left of each phylogenetic tree. See full names of viruses in Table S1 (TIF 58960 KB)

705_2022_5402_MOESM3_ESM.tif

Fig. S3 Phylogenetic analysis based on alignments of complete amino acid (aa) sequences of TnAV-6a ORF27 (A), TnAV-6a ORF36 (B), TnAV-6a ORF66 (C), TnAV-6a ORF70 (D) and TnAV-6a ORF73 (E) homologues. Phylogenetic analysis was performed using the ML method in IQ-TREE with 1000 bootstrap replicates with a protein model of FLU+I, FLU+R2, Blosum62, FLU and PMB for TnAV-6a ORF27, TnAV-6a ORF36, TnAV-6a ORF66, TnAV-6a ORF70, and TnAV-6a ORF73, respectively. Pairs of orthologous groups were identified based on a phylogenetic analysis each of homologue group. The scale bar of branch length is shown at the bottom left of each phylogenetic tree. * Newly annotated in this study. See full names of viruses in Table S1 (TIF 64239 KB)

705_2022_5402_MOESM4_ESM.tif

Fig. S4 Phylogenetic and structural analysis based on alignments of complete aa sequences of ARO homologues. A Phylogenetic analysis was performed using the maximum-likelihood method in IQ-TREE with 1000 bootstrap replicates with a protein model of VT+I+G4. The scale bar of branch length is shown at the bottom left of each phylogenetic tree. See full names of viruses in Table S1. B The corresponding polypeptide sequences of AROs at the terminal of each phylogenetic tree is represented as rectangles, with small rectangles in different colors corresponding to motifs found using MEME. All AROs shared the DUF5862 domain with unknown function. C The motifs corresponding to different colored rectangles (TIF 20558 KB)

705_2022_5402_MOESM5_ESM.tif

Fig. S5 Phylogenetic analysis based on alignments of complete aa sequences of BRO homologues. Phylogenetic analysis was performed using the maximum-likelihood method in IQ-TREE with 10,000 ultrafast bootstrap replicates with a protein model of Dayhoff+F+R7. The scale bar of branch length is shown at the bottom left of each phylogenetic tree. See full names of viruses in Table S1 (TIF 8401 KB)

Supplementary file6 (DOC 54 KB)

Supplementary file7 (DOCX 59 KB)

Supplementary file8 (XLSX 45 KB)

Supplementary file9 (DOCX 19 KB)

Supplementary file10 (DOCX 24 KB)

Supplementary file11 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Lin, W., Chu, J. et al. Comprehensive identification of protein orthologs in the family Ascoviridae facilitates an understanding of phylogenomics, protein conservation, and phosphorylation. Arch Virol 167, 1075–1087 (2022). https://doi.org/10.1007/s00705-022-05402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05402-0

Navigation