Skip to main content

Advertisement

Log in

Dynamics and stability in the maturation of a eukaryotic virus: a paradigm for chemically programmed large-scale macromolecular reorganization

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Virus maturation is found in all animal viruses and dsDNA bacteriophages that have been studied. It is a programmed process, cued by cellular environmental factors, that transitions a noninfectious, initial assembly product (provirus) to an infectious particle (virion). Nudaurelia capensis omega virus (NωV) is an ssRNA insect virus with T=4 quasi-symmetry. Over the last 20 years, NωV virus-like particles (VLPs) have been an attractive model for the detailed study of maturation. The novel feature of the system is the progressive transition from procapsid to capsid controlled by pH. Homogeneous populations of maturation intermediates can be readily produced at arbitrary intervals by adjusting the pH between 7.6 and 5.0. These intermediates were investigated using biochemical and biophysical methods to create a stop-frame transition series of this complex process. The studies reviewed here characterized the large-scale subunit reorganization during maturation (the particle changes size from 48 nm to 41 nm) as well as the mechanism of a maturation cleavage, a time-resolved study of cleavage site formation, and specific roles of quasi-equivalent subunits in the release of membrane lytic peptides required for cellular entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Qin J, Gronenborn AM (2014) Weak protein complexes: challenging to study but essential for life. FEBS J 281(8):1948–1949. https://doi.org/10.1111/febs.12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang JC, Chen C, Rayaprolu V, Mukhopadhyay S, Zlotnick A (2015) Self-assembly of an alphavirus core-like particle is distinguished by strong intersubunit association energy and structural defects. ACS Nano 9(9):8898–8906. https://doi.org/10.1021/acsnano.5b02632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hendrix RW, Johnson JE (2012) Bacteriophage HK97 capsid assembly and maturation. Adv Exp Med Biol 726:351–363. https://doi.org/10.1007/978-1-4614-0980-9_15

    Article  CAS  PubMed  Google Scholar 

  4. Pornillos O, Ganser-Pornillos BK (2019) Maturation of retroviruses. Curr Opin Virol 36:47–55. https://doi.org/10.1016/j.coviro.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sirohi D, Kuhn RJ (2017) Zika virus structure, maturation, and receptors. J Infect Dis 216(suppl_10):S935–S944. https://doi.org/10.1093/infdis/jix515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh AK, Osswald HL, Prato G (2016) Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J Med Chem 59(11):5172–5208. https://doi.org/10.1021/acs.jmedchem.5b01697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Plevka P, Battisti AJ, Junjhon J, Winkler DC, Holdaway HA, Keelapang P, Sittisombut N, Kuhn RJ, Steven AC, Rossmann MG (2011) Maturation of flaviviruses starts from one or more icosahedrally independent nucleation centres. EMBO Rep 12(6):602–606. https://doi.org/10.1038/embor.2011.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olson N, Baker T, Johnson J, Hendry D (1990) The three-dimensional structure of frozen-hydrated Nudaurelia capensis beta virus, a T = 4 insect virus. J Struct Biol 105(1–3):111–122

    Article  CAS  Google Scholar 

  9. Cavarelli J, Bomu W, Liljas L, Kim S, Minor W, Munshi S, Muchmore S, Schmidt T, Johnson J (1991) Crystallization and preliminary structure analysis of an insect virus with T=4 quasi-symmetry: Nudaurelia Capensis w virus. Acta Crystallogr B 47:23–29

    Article  Google Scholar 

  10. Agrawal DK, Johnson JE (1992) Sequence and analysis of the capsid protein of Nudaurelia capensis omega virus, an insect virus with T = 4 icosahedral symmetry. Virology 190(2):806–814

    Article  CAS  Google Scholar 

  11. Munshi S, Liljas L, Cavarelli J, Bomu W, McKinney B, Reddy V, Johnson JE (1996) The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. J Mol Biol 261(1):1–10. https://doi.org/10.1006/jmbi.1996.0437

    Article  CAS  PubMed  Google Scholar 

  12. Helgstrand C, Munshi S, Johnson JE, Liljas L (2004) The refined structure of Nudaurelia capensis omega virus reveals control elements for a T = 4 capsid maturation. Virology 318(1):192–203. https://doi.org/10.1016/j.virol.2003.08.045

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal DK, Johnson JE (1995) Assembly of the T = 4 Nudaurelia capensis omega virus capsid protein, post-translational cleavage, and specific encapsidation of its mRNA in a baculovirus expression system. Virology 207(1):89–97. https://doi.org/10.1006/viro.1995.1054

    Article  CAS  PubMed  Google Scholar 

  14. Schneemann A, Dasgupta R, Johnson JE, Rueckert RR (1993) Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. J Virol 67(5):2756–2763

    Article  CAS  Google Scholar 

  15. Canady MA, Tihova M, Hanzlik TN, Johnson JE, Yeager M (2000) Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV). J Mol Biol 299(3):573–584. https://doi.org/10.1006/jmbi.2000.3723

    Article  CAS  PubMed  Google Scholar 

  16. Canady MA, Tsuruta H, Johnson JE (2001) Analysis of rapid, large-scale protein quaternary structural changes: time-resolved X-ray solution scattering of Nudaurelia capensis omega virus (NomegaV) maturation. J Mol Biol 311(4):803–814. https://doi.org/10.1006/jmbi.2001.4896

    Article  CAS  PubMed  Google Scholar 

  17. Lee KK, Tsuruta H, Hendrix RW, Duda RL, Johnson JE (2005) Cooperative reorganization of a 420 subunit virus capsid. J Mol Biol 352(3):723–735. https://doi.org/10.1016/j.jmb.2005.07.024

    Article  CAS  PubMed  Google Scholar 

  18. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) Primus: a Windows PC-based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282. https://doi.org/10.1107/S0021889803012779

    Article  CAS  Google Scholar 

  19. Matsui T, Lander G, Johnson JE (2009) Characterization of large conformational changes and autoproteolysis in the maturation of a T=4 virus capsid. J Virol 83(2):1126–1134. https://doi.org/10.1128/JVI.01859-08

    Article  CAS  PubMed  Google Scholar 

  20. Taylor DJ, Krishna NK, Canady MA, Schneemann A, Johnson JE (2002) Large-scale, pH-dependent, quaternary structure changes in an RNA virus capsid are reversible in the absence of subunit autoproteolysis. J Virol 76(19):9972–9980. https://doi.org/10.1128/jvi.76.19.9972-9980.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsui T, Tsuruta H, Johnson JE (2010) Balanced electrostatic and structural forces guide the large conformational change associated with maturation of T = 4 virus. Biophys J 98(7):1337–1343. https://doi.org/10.1016/j.bpj.2009.12.4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsui T, Lander GC, Khayat R, Johnson JE (2010) Subunits fold at position-dependent rates during maturation of a eukaryotic RNA virus. Proc Natl Acad Sci USA 107(32):14111–14115. https://doi.org/10.1073/pnas.1004221107

    Article  PubMed  Google Scholar 

  23. Wang Q, Matsui T, Domitrovic T, Zheng Y, Doerschuk PC, Johnson JE (2013) Dynamics in cryo EM reconstructions visualized with maximum-likelihood derived variance maps. J Struct Biol 181(3):195–206. https://doi.org/10.1016/j.jsb.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  24. Banerjee M, Johnson JE (2008) Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci 9(1):16–27

    Article  CAS  Google Scholar 

  25. Domitrovic T, Matsui T, Johnson JE (2012) Dissecting quasi-equivalence in nonenveloped viruses: membrane disruption is promoted by lytic peptides released from subunit pentamers, not hexamers. J Virol 86(18):9976–9982. https://doi.org/10.1128/JVI.01089-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Odegard AL, Kwan MH, Walukiewicz HE, Banerjee M, Schneemann A, Johnson JE (2009) Low endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry. J Virol 83(17):8628–8637. https://doi.org/10.1128/JVI.00873-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penkler DL, Jiwaji M, Domitrovic T, Short JR, Johnson JE, Dorrington RA (2016) Binding and entry of a non-enveloped T=4 insect RNA virus is triggered by alkaline pH. Virology 498:277–287. https://doi.org/10.1016/j.virol.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  28. Dow JA (1992) pH gradients in lepidopteran midgut. J Exp Biol 172(Pt 1):355–375

    Article  CAS  Google Scholar 

  29. Tomasicchio M, Venter PA, Gordon KH, Hanzlik TN, Dorrington RA (2007) Induction of apoptosis in Saccharomyces cerevisiae results in the spontaneous maturation of tetravirus procapsids in vivo. J Gen Virol 88(Pt 5):1576–1582. https://doi.org/10.1099/vir.0.82250-0

    Article  CAS  PubMed  Google Scholar 

  30. Berardi A, Castells-Graells R, Lomonossoff GP (2020) High stability of plant-expressed virus-like particles of an insect virus in artificial gastric and intestinal fluids. Eur J Pharm Biopharm 155:103–111

    Article  CAS  Google Scholar 

  31. Merkl JP, Safi M, Schmidtke C, Aldeek F, Ostermann J, Domitrovic T, Gartner S, Johnson JE, Weller H, Mattoussi H (2019) Small protein sequences can induce cellular uptake of complex nanohybrids. Beilstein J Nanotechnol 10:2477–2482. https://doi.org/10.3762/bjnano.10.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Safi M, Domitrovic T, Kapur A, Zhan N, Aldeek F, Johnson JE, Mattoussi H (2017) Intracellular delivery of luminescent quantum dots mediated by a virus-derived lytic peptide. Bioconjug Chem 28(1):64–74. https://doi.org/10.1021/acs.bioconjchem.6b00609

    Article  CAS  PubMed  Google Scholar 

  33. Taylor DJ, Johnson JE (2005) Folding and particle assembly are disrupted by single-point mutations near the autocatalytic cleavage site of Nudaurelia capensis omega virus capsid protein. Protein Sci 14(2):401–408. https://doi.org/10.1110/ps.041054605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264(11):6164–6170

    Article  CAS  Google Scholar 

  35. Doerschuk PC, Gong Y, Xu N, Domitrovic T, Johnson JE (2016) Virus particle dynamics derived from CryoEM studies. Curr Opin Virol 18:57–63. https://doi.org/10.1016/j.coviro.2016.02.011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Johnson.

Additional information

Handling Editor: Marc H. V. Van Regenmortel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, J.E., Domitrovic, T., Matsui, T. et al. Dynamics and stability in the maturation of a eukaryotic virus: a paradigm for chemically programmed large-scale macromolecular reorganization. Arch Virol 166, 1547–1563 (2021). https://doi.org/10.1007/s00705-021-05007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05007-z

Navigation