Skip to main content

Advertisement

Log in

Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The increasing population infected by carbapenem-resistant Klebsiella pneumoniae necessitates the development of alternative therapies. In this study, we isolated, characterized, and sequenced a bacteriophage, P509, which was able to specifically infect and lyse carbapenem-resistant K. pneumoniae of K locus type KL64. A one-step growth curve experiment showed that the latent time period of phage P509 was 5 min, and the burst size was about 85 phage particles/cell. Stability tests confirmed that P509 was stable over a wide range of temperatures (4 to 50 °C) and pH (3 to 11) conditions. Phage P509 was identified as a linear double-stranded DNA phage with a genome of 40,954 bp with 53.2% G + C content, encoding 50 predicted proteins. Genomic and morphological analysis suggested that P509 belonged to the genus Przondovirus, family Autographiviridae, order Caudovirales. Further analysis showed that no virulence-related genes or lysogen-formation gene clusters were detected in the genome, suggesting that P509 is a lytic phage, making it potentially suitable for clinical applications. In vitro, the number of viable cells in three phage-treated groups (MOI = 0.1, 0.01, 0.001) decreased by 3.75 log10 CFU/ml, 3.32 log10 CFU/ml and 3.21 log10 CFU/ml, respectively, after 80 min of incubation, in comparison to that in the untreated group. Based on these characteristics, phage P509 may be a promising candidate for future phage therapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data

The genome sequence of phage P509 was deposited in the GenBank database under accession number MT542697.

References

  1. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):489–603

    Article  Google Scholar 

  2. Tsai FC, Huang YT, Chang LY, Wang JT (2008) Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis 14(10):1592–1600. https://doi.org/10.3201/eid1410.071254

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ohmori S, Shiraki K, Ito K, Inoue H, Ito T, Sakai T, Takase K, Nakano T (2002) Septic endophthalmitis and meningitis associated with Klebsiella pneumoniae liver abscess. Hepatol Res 22(4):307–312. https://doi.org/10.1016/s1386-6346(01)00153-x

    Article  PubMed  Google Scholar 

  4. Xu L, Sun X, Ma X (2017) Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clini Microbiol Antimicrob 16(1):18. https://doi.org/10.1186/s12941-017-0191-3

    Article  CAS  Google Scholar 

  5. Zhu WM, Yuan Z, Zhou HY (2020) Risk factors for carbapenem-resistant Klebsiella pneumoniae infection relative to two types of control patients: a systematic review and meta-analysis. Antimicrob Resist Infect Control 9(1):23. https://doi.org/10.1186/s13756-020-0686-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hsu CR, Lin TL, Pan YJ, Hsieh PF, Wang JT (2013) Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PloS One 8(8):e70092. https://doi.org/10.1371/journal.pone.0070092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pan YJ, Lin TL, Lin YT, Su PA, Chen CT, Hsieh PF, Hsu CR, Chen CC, Hsieh YC, Wang JT (2015) Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother 59(2):1038–1047. https://doi.org/10.1128/AAC.03560-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan YJ, Lin TL, Chen YH, Hsu CR, Hsieh PF, Wu MC, Wang JT (2013) Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PloS One 8(12):e80670. https://doi.org/10.1371/journal.pone.0080670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, Tsai FC, Keynan Y, Wang JT (2008) Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46(7):2231–2240. https://doi.org/10.1128/JCM.01716-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li B, Zhao Y, Liu C, Chen Z, Zhou D (2014) Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 9(9):1071–1081. https://doi.org/10.2217/fmb.14.48

    Article  CAS  PubMed  Google Scholar 

  11. Zhao X, Cui Y, Yan Y, Du Z, Tan Y, Yang H, Bi Y, Zhang P, Zhou L, Zhou D, Han Y, Song Y, Wang X, Yang R (2013) Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi. J Virol 87(22):12260–12269. https://doi.org/10.1128/JVI.01948-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan F, Li X, Pang B, Zhang C, Li Z, Zhang L, Li J, Zhang J, Yan M, Liang W, Kan B (2018) The outer-membrane protein TolC of Vibrio cholerae serves as a second cell-surface receptor for the VP3 phage. J Biol Chem 293(11):4000–4013. https://doi.org/10.1074/jbc.M117.805689

    Article  CAS  PubMed  Google Scholar 

  13. Porcek NB, Parent K N (2015) Key residues of S flexneri OmpA mediate infection by bacteriophage Sf6. J Mol Biol 427(10):194–196. https://doi.org/10.1016/j.jmb.2015.03.012

  14. Pan YJ, Lin TL, Chen CC, Tsai YT, Cheng YH, Chen YY, Hsieh PF, Lin YT, Wang JT (2017) Klebsiella Phage PhiK64-1 Encodes Multiple Depolymerases for Multiple Host Capsular Types. J Virol. https://doi.org/10.1128/jvi.02457-16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q (2019) A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10:2768. https://doi.org/10.3389/fmicb.2019.02768

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin TL, Hsieh PF, Huang YT, Lee WC, Tsai YT, Su PA, Pan YJ, Hsu CR, Wu MC, Wang JT (2014) Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 210(11):1734–1744. https://doi.org/10.1093/infdis/jiu332

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh PF, Lin HH, Lin TL, Chen YY, Wang JT (2017) Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Sci Rep 7(1):4624. https://doi.org/10.1038/s41598-017-04644-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Li P, Niu W, Yuan X, Liu H, Huang Y, An X, Fan H, Zhangxiang L, Mi L, Zheng J, Liu Y, Tong Y, Mi Z, Bai C (2019) Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol 170(3):156–164. https://doi.org/10.1016/j.resmic.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  19. Li M, Guo M, Chen L, Zhu C, Xiao Y, Li P, Guo H, Chen L, Zhang W, Du H (2020) Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01554

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adams M (1959) Bacteriophage. Interscience Publishers, New York

    Google Scholar 

  21. Gu J, Xu W, Lei L, Huang J, Feng X, Sun C, Du C, Zuo J, Li Y, Du T, Li L, Han W (2011) LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 49(1):111–117. https://doi.org/10.1128/JCM.01144-10

    Article  CAS  PubMed  Google Scholar 

  22. Mirzaei MK, Nilsson AS (2015) Correction: Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PloS One 10(5):e0127606. https://doi.org/10.1371/journal.pone.0127606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji Y, Cheng M, Zhai S, Xi H, Cai R, Wang Z, Zhang H, Wang X, Xue Y, Li X, Sun C, Feng X, Lei L, Ur Rahman S, Han W, Gu J (2019) Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol 229:72–80. https://doi.org/10.1016/j.vetmic.2018.12.021

    Article  CAS  PubMed  Google Scholar 

  24. Gong P, Cheng M, Li X, Jiang H, Yu C, Kahaer N, Li J, Zhang L, Xia F, Hu L, Sun C, Feng X, Lei L, Han W, Gu J (2016) Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology 492:11–20. https://doi.org/10.1016/j.virol.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  25. Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 182(18):5114–5120. https://doi.org/10.1128/jb.182.18.5114-5120.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook J, Russell DW (2006) Precipitation of Bacteriophage lambda Particles from Large-scale Lysates. CSH Protoc. https://doi.org/10.1101/pdb.prot3966

    Article  PubMed  Google Scholar 

  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi Y, Chen Y, Yang Z, Zhang Y, You B, Liu X, Chen P, Liu M, Zhang C, Luo X, Chen Y, Yuan Z, Chen J, Gong Y, Peng Y (2020) Characterization and genome sequencing of a novel T7-like lytic phage, kpssk3, infecting carbapenem-resistant Klebsiella pneumoniae. Arch Virol 165(1):97–104. https://doi.org/10.1007/s00705-019-04447-y

    Article  CAS  PubMed  Google Scholar 

  31. Tan D, Zhang Y, Cheng M, Le S, Gu J, Bao J, Qin J, Guo X, Zhu T (2019) Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses. https://doi.org/10.3390/v11111080

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y (2009) Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett 295(2):211–217. https://doi.org/10.1111/j.1574-6968.2009.01588.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (U1803109), National Key R&D Program of China (2018YFC1602500), University-Level Science and Technology Team of Wuhu Institute of Technology (wzykjtd202002), Key Research and Development Project of Jiangsu Provincial Science and Technology Department (BE2017654), Gusu Key Health Talent of Suzhou, Jiangsu Youth Medical Talents Program (QN-867), and the Science and Technology Program of Suzhou (SZS201715).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. ML, YX, PL, ZW, WQ and ZQ performed experiments and computational analysis. ML wrote the first draft of the manuscript. All authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xiao, Y., Li, P. et al. Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch Virol 165, 2799–2806 (2020). https://doi.org/10.1007/s00705-020-04822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04822-0

Navigation