Skip to main content
Log in

Complete genome sequence of a novel bacteriophage, ATCEA85, infecting Enterobacter aerogenes

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Enterobacter aerogenes is a member of the ESKAPE group of bacteria, and multi-drug-resistant strains are increasingly being found. In this study, a novel bacteriophage, ATCEA85, which infects E. aerogenes, has been isolated and characterized. ATCEA85 is seen to have a circularly permuted linear double-stranded DNA genome of 47,484 base pairs in length. The closest related phage found in the databases is the Klebsiella phage Kp3, which exhibits 77% identity over a 34% query coverage. The G+C content of ATCEA85 is 56.2%, and 15 putative open reading frames are functionally annotated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308

    Article  CAS  PubMed  Google Scholar 

  3. Davin-Regli A, Pagès JM (2019) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6:392

    Google Scholar 

  4. Davin-Regli A, Lavigne JP, Pagès JM (2019) Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 32(4):e00002–19. https://doi.org/10.1128/CMR.00002-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thaden JT, Pogue JM, Kaye KS (2017) Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence 8(4):403–416

    Article  CAS  PubMed  Google Scholar 

  6. Rozwandowicz M, Brouwer MSM, Fischer J et al (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73(5):1121–1137

    Article  CAS  PubMed  Google Scholar 

  7. Fritzenwanker M, Imirzalioglu C, Herold S et al (2018) Treatment options for carbapenem-resistant Gram-negative infections. Dtsch Arztebl Int. 115(20–21):345–352

    PubMed  PubMed Central  Google Scholar 

  8. Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R (2019) Therapeutic characterization and Efficacy of bacteriophage cocktails infecting Escherichia coliKlebsiella pneumoniae, and Enterobacter species. Front Microbiol 10:574

    Article  PubMed  PubMed Central  Google Scholar 

  9. Verthé K, Possemiers S, Boon N, Vaneechoutte M, Verstraete W (2004) Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions. Appl Microbiol Biotechnol 65(4):465–472

    Article  PubMed  Google Scholar 

  10. Mishra CK, Choi TJ, Kang SC (2012) Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes. J Gen Virol 93(Pt 10):2310–2314

    Article  CAS  PubMed  Google Scholar 

  11. Li E, Wei X, Ma Y, Yin Z, Li H, Lin W, Wang X, Li C, Shen Z, Zhao R, Yang H, Jiang A, Yang W, Yuan J, Zhao X (2016) Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes. Sci Rep 6:28338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao J, Zhang Z, Tian C, Chen X, Hu L, Wei X, Li H, Lin W, Jiang A, Feng R, Yuan J, Yin Z, Zhao X (2019) Characterizing the biology of lytic bacteriophage vB_EaeM_φEap-3 infecting multidrug-resistant Enterobacter aerogenes. Front Microbiol 10:420

    Article  PubMed  PubMed Central  Google Scholar 

  13. Domingo-Calap P, Delgado-Martínez J (2018) Bacteriophages: protagonists of a post-antibiotic era. Antibiotics 7(3):66

    Article  CAS  PubMed Central  Google Scholar 

  14. Hong SS, Jeong J, Lee J, Kim S, Min W, Myung H (2013) Therapeutic effects of bacteriophages against Salmonella gallinarum infection in chickens. J Microbiol Biotechnol 23:1478–1483

    Article  CAS  PubMed  Google Scholar 

  15. Cha K, Oh HK, Jang JY, Jo Y, Kim WK, Ha GU, Ko KS, Myung H (2018) Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front Microbiol 9:696

    Article  PubMed  PubMed Central  Google Scholar 

  16. Azam AH, Tanji Y (2019) Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 103(5):2121–2131

    Article  CAS  PubMed  Google Scholar 

  17. Divya Ganeshan S, Hosseinidoust Z (2019) Phage therapy with a focus on the human microbiota. Antibiotics 8(3):131

    Article  PubMed Central  Google Scholar 

  18. Bernheim A, Sorek R (2019) The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 18:113–119

    Article  PubMed  Google Scholar 

  19. Sambrook J, Russell DW (2006) Purification of bacteriophage lambda particles by centrifugation through a glycerol step gradient. CSH Protoc. https://doi.org/10.1101/pdb.prot3969

    Article  PubMed  Google Scholar 

  20. Manfioletti G, Schneider C (1988) A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res 16:2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garneau JR, Depardieu F, Fortier L, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  22. Garneau JR, Sekulovic O, Dupuy B, Soutourina O, Monot M, Fortier LC (2018) High prevalence and genetic diversity of large phiCD211 (phiCDIF1296T)-like prophages in Clostridioides difficile. Appl Environ Microbiol 84(3) (pii: e02164-17)

Download references

Funding

This work was supported by the ATC Program 10076996 from Ministry of Trade, Industry, and Energy of Korea. In addition, this study was sponsored by the National Research Foundation of Korea (NRF-2017M3A9B8069292) and the HUFS Research Fund of 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heejoon Myung.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This study does not contain any experiments with human or animal subjects performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H.K., Jo, J.H., Hwang, Y.J. et al. Complete genome sequence of a novel bacteriophage, ATCEA85, infecting Enterobacter aerogenes. Arch Virol 165, 2397–2400 (2020). https://doi.org/10.1007/s00705-020-04751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04751-y

Navigation