Skip to main content
Log in

Translating the language of giants: translation-related genes as a major contribution of giant viruses to the virosphere

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Giant viruses of amoebas are a remarkable group of viruses. In addition to their large size and peculiar structures, the genetic content of these viruses is also special. Among the genetic features of these viruses that stand out is the presence of coding regions for elements involved in translation, a complex biological process that occurs in cellular organisms. No viral genome described so far has such a complex genetic arsenal as those of giant viruses, which code for several of these elements. Currently, tupanviruses have the most complete set of translation genes in the known virosphere. In this review, we have condensed what is currently known about translation genes in different groups of giant viruses and theorize about their biological importance, origin, and evolution, and what might possibly be found in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao J, Qin B, Nikolay R et al (2019) Translatomics: the global view of translation. Int J Mol Sci 20:212. https://doi.org/10.3390/ijms20010212

    Article  CAS  PubMed Central  Google Scholar 

  2. Guo H (2018) Specialized ribosomes and the control of translation. Biochem Soc Trans 46:855–869. https://doi.org/10.1042/BST20160426

    Article  CAS  PubMed  Google Scholar 

  3. Calamita P, Gatti G, Miluzio A et al (2018) Translating the game: ribosomes as active players. Front Genet 9:533. https://doi.org/10.3389/fgene.2018.00533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li S (2019) Regulation of ribosomal proteins on viral infection. Cells 8:508. https://doi.org/10.3390/cells8050508

    Article  CAS  PubMed Central  Google Scholar 

  5. O’Donoghue P, Ling J, Söll D (2018) Transfer RNA function and evolution. RNA Biol 15:423–426. https://doi.org/10.1080/15476286.2018.1478942

    Article  PubMed  PubMed Central  Google Scholar 

  6. Venezia ND, Vincent A, Marcel V et al (2019) Emerging role of eukaryote ribosomes in translational control. Int J Mol, Sci 20:1226. https://doi.org/10.3390/ijms20051226

    Article  CAS  Google Scholar 

  7. Dreher TW (2010) Viral tRNAs and tRNA-like structures. Wiley Interdiscip Rev RNA 1:402–414. https://doi.org/10.1002/wrna.42

    Article  CAS  PubMed  Google Scholar 

  8. Lwoff A (1957) The concept of virus. J Gen Microbiol 17:239–253. https://doi.org/10.1099/00221287-17-2-239

    Article  CAS  PubMed  Google Scholar 

  9. La Scola B, Audic S, Robert C et al (2003) A giant virus in amoebae. Science 299:2033. https://doi.org/10.1126/science.1081867

    Article  PubMed  Google Scholar 

  10. Xiao C, Kuznetso YG, Sun S et al (2009) Structural studies of the giant mimivirus. PLoS Biol 7:958–966. https://doi.org/10.1371/journal.pbio.1000092-S

    Article  CAS  Google Scholar 

  11. Raoult D, Audic S, Robert C et al (2004) The 1.2-Megabase genome sequence of mimivirus. Science 306:1344–1350. https://doi.org/10.1126/science.1101485

    Article  CAS  PubMed  Google Scholar 

  12. Legendre M, Santini S, Rico A et al (2011) Breaking the 1000-gene barrier for mimivirus using ultra-deep genome and transcriptome sequencing. Virol J 8:99. https://doi.org/10.1186/1743-422X-8-99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raoult D, Forterre P (2008) Redefining viruses: lessons from mimivirus. Nat Rev Microbiol 6:315–319. https://doi.org/10.1038/nrmicro1858

    Article  CAS  PubMed  Google Scholar 

  14. Raoult D (2013) TRUC or the need for a new microbial classification. Intervirology 56:349–353. https://doi.org/10.1159/000354269

    Article  PubMed  Google Scholar 

  15. Forterre P (2010) Giant viruses: conflicts in revisiting the virus concept. Intervirology 53:362–378. https://doi.org/10.1159/000312921

    Article  PubMed  Google Scholar 

  16. Moreira D, López-garcía P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7:306–311. https://doi.org/10.1038/nrmicro2108

    Article  CAS  PubMed  Google Scholar 

  17. Claverie J-M, Ogata H (2009) Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol 7:615. https://doi.org/10.1038/nrmicro2108-c3(author reply 615)

    Article  CAS  PubMed  Google Scholar 

  18. Yoosuf N, Yutin N, Colson P et al (2012) Related giant viruses in distant locations and different habitats: Acanthamoeba polyphaga moumouvirus represents a third lineage of the Mimiviridae that is close to the Megavirus lineage. Genome Biol Evol 4:1324–1330. https://doi.org/10.1093/gbe/evs109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arslan D, Legendre M, Seltzer V et al (2011) Distant mimivirus relative with a larger genome highlights the fundamental features of megaviridae. Proc Natl Acad Sci 108:17486–17491. https://doi.org/10.1073/pnas.1110889108

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colson P, De Lamballerie X, Fournous G, Raoult D (2012) Reclassification of giant viruses composing a fourth domain of life in the new order megavirales. Intervirology 55:321–332. https://doi.org/10.1159/000336562

    Article  PubMed  Google Scholar 

  21. Abrahão JS, Araújo R, Colson P, La Scola B (2017) The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genet 13:e1006532. https://doi.org/10.1371/journal.pgen.1006532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boratto PVM, Arantes TS, Silva LCF et al (2015) Niemeyer virus: a new mimivirus group A isolate harboring a set of duplicated aminoacyl-tRNA synthetase genes. Front Microbiol 6:1256. https://doi.org/10.3389/fmicb.2015.01256

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boratto PVM, Dornas FP, da Silva LCF et al (2017) Analyses of the kroon virus major capsid gene and its transcript highlight a distinct pattern of gene evolution and splicing among mimiviruses. J Virol 92:e01782–17. https://doi.org/10.1128/jvi.01782-17

    Article  CAS  Google Scholar 

  24. Assis FL, Bajrai L, Abrahao JS et al (2015) Pan-genome analysis of Brazilian lineage a amoebal mimiviruses. Viruses 7:3483–3499. https://doi.org/10.3390/v7072782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abergel C, Chenivesse S, Byrne D et al (2005) Mimivirus TyrRS: preliminary structural and functional characterization of the first amino-acyl tRNA synthetase found in a virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:212–215. https://doi.org/10.1107/S174430910500062X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abergel C, Rudinger-Thirion J, Giegé R, Claverie J-M (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol 81:12406–12417. https://doi.org/10.1128/JVI.01107-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Silva LCF, Almeida GMF, Assis FL et al (2015) Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection. Front Microbiol 6:539. https://doi.org/10.3389/fmicb.2015.00539

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bekliz M, Azza S, Seligmann H et al (2018) Experimental analysis of mimivirus translation initiation factor 4a reveals its importance in viral protein translation during infection of acanthamoeba polyphaga. J Virol 92:e00337–18. https://doi.org/10.1128/jvi.00337-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Legendre M, Audic S, Poirot O et al (2010) mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res 20:664–674. https://doi.org/10.1101/gr.102582.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colson P, Fournous G, Diene SM, Raoult D (2013) Codon usage, amino acid usage, transfer RNA and amino-Acyl-tRNA synthetases in mimiviruses. Intervirology 56:364–375. https://doi.org/10.1159/000354557

    Article  CAS  PubMed  Google Scholar 

  31. Fischer MG, Allen MJ, Wilson WH, Suttle CA (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA 107:19508–19513. https://doi.org/10.1073/pnas.1007615107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schulz F, Yutin N, Ivanova NN et al (2017) Giant viruses with an expanded complement of translation system components. Science 356:82–85. https://doi.org/10.1126/science.aal4657

    Article  CAS  PubMed  Google Scholar 

  33. Abrahão J, Silva L, Silva LS et al (2018) Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun 9:749. https://doi.org/10.1038/s41467-018-03168-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodrigues RAL, Arantes TS, Oliveira GP et al (2019) The complex nature of tupanviruses. Adv Vir Res 103:135–166. https://doi.org/10.1016/bs.aivir.2018.09.001

    Article  Google Scholar 

  35. Silva LCF, Rodrigues RAL, Oliveira GP et al (2019) Microscopic analysis of the tupanvirus cycle in vermamoeba vermiformis. Front Microbiol 10:671. https://doi.org/10.3389/fmicb.2019.00671

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oliveira G, Silva L, Leão T et al (2019) Tupanvirus-infected amoebas are induced to aggregate with uninfected cells promoting viral dissemination. Sci Rep 9:183. https://doi.org/10.1038/s41598-018-36552-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodrigues RAL, Mougari S, Colson P et al (2019) “Tupanvirus”, a new genus in the family Mimiviridae. Arch Virol 164:325–331. https://doi.org/10.1007/s00705-018-4067-4

    Article  CAS  PubMed  Google Scholar 

  38. Schulz F, Alteio L, Goudeau D et al (2018) Hidden diversity of soil giant viruses. Nat Commun 9:4881. https://doi.org/10.1038/s41467-018-07335-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deeg CM, Chow C-ET, Suttle CA (2018) The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. Elife 7:e33014. https://doi.org/10.7554/eLife.33014

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bajrai LH, Mougari S, Andreani J et al (2019) Isolation of Yasminevirus, the first member of Klosneuvirinae isolated in coculture with Vermamoeba vermiformis, demonstrates an extended arsenal of translational apparatus components. J Virol 94:e01534–19. https://doi.org/10.1128/JVI.01534-19

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boyer M, Yutin N, Pagnier I et al (2009) Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA 106:21848–21853. https://doi.org/10.1073/pnas.0911354106

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thomas V, Bertelli C, Collyn F et al (2011) Lausannevirus, a giant amoebal virus encoding histone doublets. Environ Microbiol 13:1454–1466. https://doi.org/10.1111/j.1462-2920.2011.02446.x

    Article  CAS  PubMed  Google Scholar 

  43. Aherfi S, Boughalmi M, Pagnier I et al (2014) Complete genome sequence of Tunisvirus, a new member of the proposed family Marseilleviridae. Arch Virol 159:2349–2358. https://doi.org/10.1007/s00705-014-2023-5

    Article  CAS  PubMed  Google Scholar 

  44. Dornas FP, Assis FL, Aherfi S et al (2016) A Brazilian marseillevirus is the founding member of a lineage in family marseilleviridae. Viruses 8:76. https://doi.org/10.3390/v8030076

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dos Santos RN, Campos FS, Medeiros De Albuquerque NR et al (2016) A new marseillevirus isolated in Southern Brazil from Limnoperna fortunei. Sci Rep 6:35237. https://doi.org/10.1038/srep35237

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reteno DG, Benamar S, Khalil JB et al (2015) Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J Virol 89:6585–6594. https://doi.org/10.1128/JVI.00115-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andreani J, Khalil JYB, Sevvana M et al (2017) Pacmanvirus, a new giant icosahedral virus at the crossroads between asfarviridae and faustoviruses. J Virol 91:e00212–17. https://doi.org/10.1128/JVI.00212-17

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bajrai LH, Benamar S, Azhar EI et al (2016) Kaumoebavirus, a new virus that clusters with Faustoviruses and Asfarviridae. Viruses 8:278. https://doi.org/10.3390/v8110278

    Article  CAS  PubMed Central  Google Scholar 

  49. Benamar S, Reteno DGI, Bandaly V et al (2016) Faustoviruses: comparative genomics of new megavirales family members. Front Microbiol 7:3. https://doi.org/10.3389/fmicb.2016.00003

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klose T, Reteno DG, Benamar S et al (2016) Structure of faustovirus, a large dsDNA virus. Proc Natl Acad Sci USA 113:6206–6211. https://doi.org/10.1073/pnas.1523999113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Louazani AC, Baptiste E, Levasseur A et al (2018) Faustovirus E12 transcriptome analysis reveals complex splicing in capsid gene. Front Microbiol 9:2534. https://doi.org/10.3389/fmicb.2018.02534

    Article  Google Scholar 

  52. Philippe N, Legendre M, Doutre G et al (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286. https://doi.org/10.1126/science.1239181

    Article  CAS  PubMed  Google Scholar 

  53. Yutin N, Koonin EV (2013) Pandoraviruses are highly derived phycodnaviruses. Biol Direct 8:25. https://doi.org/10.1186/1745-6150-8-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Legendre M, Fabre E, Poirot O et al (2018) Diversity and evolution of the emerging Pandoraviridae family. Nat Commun 9:2285. https://doi.org/10.1038/s41467-018-04698-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. dos Pereira Andrade ACS, Victor de Miranda Boratto P, Rodrigues RAL et al (2018) New isolates of pandoraviruses: contribution to the study of replication cycle steps. J Virol 93:e01942–18. https://doi.org/10.1128/jvi.01942-18

    Article  CAS  Google Scholar 

  56. Scheid P (2016) A strange endocytobiont revealed as largest virus. Curr Opin Microbiol 31:58–62. https://doi.org/10.1016/j.mib.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  57. Legendre M, Lartigue A, Bertaux L et al (2015) In-depth study of Mollivirus sibericum, a new 30,000-year-old giant virus infecting Acanthamoeba. Proc Natl Acad Sci USA 112:E5327–35. https://doi.org/10.1073/pnas.1510795112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Legendre M, Bartoli J, Shmakova L et al (2014) Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA 111:4274–4279. https://doi.org/10.1073/pnas.1320670111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levasseur A, Andreani J, Delerce J et al (2016) Comparison of a modern and fossil Pithovirus reveals its genetic conservation and evolution. Genome Biol Evol 8:2333–2339. https://doi.org/10.1093/gbe/evw153

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bäckström D, Yutin N, Jørgensen SL et al (2019) Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. MBio 10:e02497–18. https://doi.org/10.1128/mBio.02497-18

    Article  PubMed  PubMed Central  Google Scholar 

  61. Andreani J, Aherfi S, Khalil JYB et al (2016) Cedratvirus, a double-cork structured giant virus, is a distant relative of pithoviruses. Viruses 8:300. https://doi.org/10.3390/v8110300

    Article  CAS  PubMed Central  Google Scholar 

  62. Bertelli C, Mueller L, Thomas V et al (2017) Cedratvirus lausannensis—digging into Pithoviridae diversity. Environ Microbiol 19:4022–4034. https://doi.org/10.1111/1462-2920.13813

    Article  CAS  PubMed  Google Scholar 

  63. Silva LKDS, Andrade ACDSP, Dornas FP et al (2018) Cedratvirus getuliensis replication cycle: an in-depth morphological analysis. Sci Rep 8:4000. https://doi.org/10.1038/s41598-018-22398-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodrigues RAL, Andreani J, dos Andrade ACSP et al (2018) Morphologic and genomic analyses of new isolates reveal a second lineage of cedratviruses. J Virol 92:e00372–18. https://doi.org/10.1128/jvi.00372-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Andreani J, Khalil JYB, Baptiste E et al (2018) Orpheovirus IHUMI-LCC2: a new virus among the giant viruses. Front Microbiol 8:2643. https://doi.org/10.3389/fmicb.2017.02643

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boyer M, Madoui MA, Gimenez G et al (2010) Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One 5:e15530. https://doi.org/10.1371/journal.pone.0015530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nasir A, Kim KM, Caetano-Anolles G (2012) Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol 12:156. https://doi.org/10.1186/1471-2148-12-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Colson P, Levasseur A, La Scola B et al (2018) Ancestrality and mosaicism of giant viruses supporting the definition of the fourth TRUC of microbes. Front Microbiol 9:2668. https://doi.org/10.3389/fmicb.2018.02668

    Article  PubMed  PubMed Central  Google Scholar 

  69. Moreira D, Brochier-Armanet C (2008) Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol Biol 8:12. https://doi.org/10.1186/1471-2148-8-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yutin N, Wolf YI, Koonin EV (2014) Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–467:38–52. https://doi.org/10.1016/j.virol.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  71. Rodrigues RAL, Abrahao JS, Drumond BP, Kroon EG (2016) Giants among larges: how gigantism impacts giant virus entry into amoebae. Curr Opin Microbiol 31:88–93. https://doi.org/10.1016/j.mib.2016.03.009

    Article  PubMed  Google Scholar 

  72. Koonin EV, Yutin N (2019) Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv Vir Res 103:167–202. https://doi.org/10.1016/bs.aivir.2018.09.002

    Article  Google Scholar 

  73. Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6. https://doi.org/10.1186/1756-3305-5-6

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mizuno CM, Guyomar C, Roux S et al (2019) Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat Commun 10:752. https://doi.org/10.1038/s41467-019-08672-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boratto PVM, Oliveira GP, Machado TB et al (2020) A mysterious 80 nm amoeba virus with a near-complete “ORFan genome” challenges the classification of DNA viruses. bioRxiv 1:1. https://doi.org/10.1101/2020.01.28.923185

    Article  Google Scholar 

  76. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Third Int AAAI Conf Weblogs Soc Media. https://doi.org/10.1136/qshc.2004.010033

    Article  Google Scholar 

  77. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nguyen L, Schmidt HA, Von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank colleagues from Universidade Federal de Minas Gerais for technical assistance and discussions. We also thank CAPES, CNPq and FAPEMIG for scholarships and grants. JSA is a CNPq researcher. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jônatas Santos Abrahão.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, R.A.L., da Silva, L.C.F. & Abrahão, J.S. Translating the language of giants: translation-related genes as a major contribution of giant viruses to the virosphere. Arch Virol 165, 1267–1278 (2020). https://doi.org/10.1007/s00705-020-04626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04626-2

Navigation