Skip to main content
Log in

Transition in genetic constellations of H3N8 and H4N6 low-pathogenic avian influenza viruses isolated from an overwintering site in Japan throughout different winter seasons

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site for migratory ducks and endangered cranes. We have surveyed avian influenza viruses (AIVs) in this area since 2012 and isolated low-pathogenic AIVs (LPAIVs) of various subtypes every winter season. H3N8 LPAIVs were isolated during the 2012/13 and 2016/17 seasons, and H4N6 LPAIVs were isolated during the 2012/13 and 2013/14 seasons. In the 2017/18 season, one H3N8 and two H4N6 LPAIV strains were isolated from environmental water samples. Genetic and phylogenetic analysis for each gene segment from these H3N8 and H4N6 LPAIVs suggested that our isolates were genetic reassortants generated by intermixing between AIVs circulating not only in Eurasia but also in Africa and/or North America. Comparison of the genetic constellations of our three isolates with their counterparts isolated during previous seasons from the Izumi plain revealed a drastic transition in the genetic constellations of both subtypes. These findings emphasize the importance of continuous surveillance of AIVs on the Izumi plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1):152–179

    Article  CAS  Google Scholar 

  2. Neumann G, Kawaoka Y (2015) Transmission of influenza A viruses. Virology 479–480:234–246

    Article  Google Scholar 

  3. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79(5):2814–2822

    Article  CAS  Google Scholar 

  4. Yasuhiro Y (2017) Hooded Crane Nabe-zuru (Jpn) Grus monacha. Bird Research News, Japan Bird Research Association Vol.4, No.1. http://www.bird-research.jp/1_shiryo/seitai/nabezuru.pdf. Accessed 22 June 2019

  5. Mutsuyuki U (2010) White naped-crane Manazuru (Jpn) Grus Vibio. Bird Research News, Japan Bird Research Association Vol.7 No.1. http://www.bird-research.jp/1_shiryo/seitai/mana.pdf. Accessed 22 June 2019

  6. BirdLife International (2016) Grus monacha. The IUCN Red List of Threatened Species 2016: e.T22692151A93337861. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692151A93337861.en

  7. BirdLife International (2018) Antigone vipio. The IUCN Red List of Threatened Species 2018: e.T22692073A131927305. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22692073A131927305.en

  8. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA (2006) Global patterns of influenza A virus in wild birds. Science 312(5772):384–388

    Article  CAS  Google Scholar 

  9. Okuya K, Kawabata T, Nagano K, Tsukiyama-Kohara K, Kusumoto I, Takase K, Ozawa M (2015) Isolation and characterization of influenza A viruses from environmental water at an overwintering site of migratory birds in Japan. Arch Virol 160(12):3037–3052

    Article  CAS  Google Scholar 

  10. Nakagawa H, Okuya K, Kawabata T, Matsuu A, Takase K, Kuwahara M, Toda S, Ozawa M (2018) Genetic characterization of low pathogenic avian influenza viruses isolated on the Izumi plain in Japan: possible association of dynamic movements of wild birds with AIV evolution. Arch Virol 163(4):911–923

    Article  CAS  Google Scholar 

  11. Sakoda Y, Ito H, Uchida Y, Okamatsu M, Yamamoto N, Soda K, Nomura N, Kuribayashi S, Shichinohe S, Sunden Y, Umemura T, Usui T, Ozaki H, Yamaguchi T, Murase T, Ito T, Saito T, Takada A, Kida H (2012) Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010–2011 winter season in Japan. J Gen Virol 93(Pt 3):541–550

    Article  CAS  Google Scholar 

  12. Ozawa M, Matsuu A, Tokorozaki K, Horie M, Masatani T, Nakagawa H, Okuya K, Kawabata T, Toda S (2015) Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, 2014/15. Euro Surveill 20(20):21132

    Article  Google Scholar 

  13. Okamatsu M, Ozawa M, Soda K, Takakuwa H, Haga A, Hiono T, Matsuu A, Uchida Y, Iwata R, Matsuno K, Kuwahara M, Yabuta T, Usui T, Ito H, Onuma M, Sakoda Y, Saito T, Otsuki K, Ito T, Kida T (2017) Characterization of highly pathogenic avian influenza virus A(H5N6), Japan, November 2016. Emerg Infect Dis. 23(4):691–695

    Article  Google Scholar 

  14. Ozawa M, Matsuu A, Khalil AM, Nishi N, Tokorozaki K, Masatani T, Horie M, Okuya K, Ueno K, Kuwahara M, Toda S (2019) Phylogenetic variations of highly pathogenic H5N6 avian influenza viruses isolated from wild birds in the Izumi plain, Japan, during the 2016–17 winter season. Transbound Emerg Dis 66(2):797–806

    Article  Google Scholar 

  15. Okuya K, Kanazawa N, Kanda T, Kuwahara M, Matsuu A, Horie M, Masatani T, Toda S, Ozawa M (2017) Genetic characterization of an avian H4N6 influenza virus isolated from the Izumi plain, Japan. Microbiol Immunol 61(11):513–518

    Article  CAS  Google Scholar 

  16. Tsukamoto K, Ashizawa H, Nakanishi K, Kaji N, Suzuki K, Okamatsu M, Yamaguchi S, Mase M (2008) Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential. J Clin Microbiol 46(9):3048–3055

    Article  CAS  Google Scholar 

  17. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146(12):2275–2289

    Article  CAS  Google Scholar 

  18. Review of latest available evidence on potential transmission of avian influenza (H5N1) through water and sewage and ways to reduce the risks to human health (2007) Water, Sanitation and Health Public Health and Environment Geneva 2006. https://www.who.int/water_sanitation_health/emerging/h5n1background.pdf. Accessed 30 Oct 2019

  19. Maeda Y, Tohya Y, Nakagami Y, Yamashita M, Sugimura T (2001) An occurrence of salmonella infection in cranes at the Izumi Plains, Japan. J Vet Med Sci 63(8):943–944

    Article  CAS  Google Scholar 

  20. Daniel R, Hosseini PR, Mazet JA, Daszak P, Goldstein T (2015) Evolutionary dynamics and global diversity of influenza A virus. J Virol 89(21):10993–11001. https://doi.org/10.1128/JVI.01573-15

    Article  CAS  Google Scholar 

  21. Winker K, McCracken KG, Gibson DD, Pruett CL, Meier R, Huettmann F, Wege M, Kulikova IV, Zhuravlev YN, Perdue ML, Spackman E, Suarez D, Swayne DE (2007) Movements of birds and avian influenza from Asia into Alaska. Emerg Infect Dis. 13(4):547–552

    Article  Google Scholar 

  22. Ramey AM, Reeves AB, Sonsthagen SA, TeSlaa JL, Nashold S, Donnelly T, Casler B, Hall JS (2015) Dispersal of H9N2 influenza A viruses between East Asia and North America by wild birds. Virology 482(2015):79–83

    Article  CAS  Google Scholar 

  23. Schmolke M, Manicassamy B, Pena L, Sutton T, Hai R, Varga ZT, Hale BG, Steel J, Perez DR, Garcia-Sastre A (2011) Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. PLoS Pathog 7(8):e1002186

    Article  CAS  Google Scholar 

  24. Chakrabarti AK, Pasricha G (2013) An insight into the PB1F2 protein and its multifunctional role in enhancing the pathogenicity of the influenza A viruses. Virology 440(2):97–104

    Article  CAS  Google Scholar 

  25. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3(10):1414–1421

    Article  CAS  Google Scholar 

  26. García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252(2):324–330

    Article  Google Scholar 

  27. Obenauer JC, Denson PK, Mehta X, Su S, Mukatira DB, Finkelstein X, Xu J, Wang J, Ma Y, Fan KM, Rakestraw Webster RG, Hoffmann E, Krauss S, Zheng Z, Zhang J, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311(5767):1576–1580

    Article  CAS  Google Scholar 

  28. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  CAS  Google Scholar 

  29. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA 105(11):4381–4386

    Article  CAS  Google Scholar 

  30. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428

    Article  CAS  Google Scholar 

  31. Nidom CA, Takano R, Yamada S, Sakai-Tagawa Y, Daulay S, Aswadi D, Suzuki T, Suzuki Y, Shinya K, Iwatsuki-Horimoto K, Muramoto Y, Kawaoka Y (2010) Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis 16(10):1515–1523

    Article  Google Scholar 

  32. Yang H, Chen LM, Carney PJ, Donis RO, Stevens J (2010) Structures of receptor complexes of a North American H7N2 Influenza Hemagglutinin with a loop deletion in the receptor binding site. PLoS Pathog 6(9):e1001081

    Article  Google Scholar 

  33. Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T (2010) PB2 residue 271 plays a key role in enhanced polymerase activity of Influenza A Viruses in mammalian host cells. J Virol 84:4395–4406

    Article  CAS  Google Scholar 

  34. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 Influenza A viruses. Science 293:1840–1842

    Article  CAS  Google Scholar 

  35. Min JY, Santos C, Fitch A, Twaddle A, Toyoda Y, DePasse JV, Ghedin E, Subbarao K (2013) Mammalian adaptation in the PB2 gene of Avian H5N1 Influenza Virus. J Virol 87(19):10884–10888

    Article  CAS  Google Scholar 

  36. Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of Influenza Virus in a mammalian host is increased by PB2 amino acids 627 K or 627E/701N. PLoS Pathog 5(1):e1000252

    Article  Google Scholar 

  37. Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K, Sakai-Tagawa Y, Ito M, Ozawa M, Watanabe T, Sakabe S, Li C, Kim JH, Myler PJ, Phan I, Raymond A, Smith E, Stacy R, Nidom CA, Lank SM, Wiseman RW, Bimber BN, O’Connor DH, Neumann G, Stewart LJ, Kawaoka Y (2010) Biological and structural characterization of a host-adapting amino acid in Influenza Virus. PLoS Pathog 6(8):e1001034

    Article  Google Scholar 

  38. Hay AJ, Zambon MC, Wolstenholme AJ, Skehel JJ, Smith MH (1986) Molecular basis of resistance of influenza A viruses to amantadine. J Antimicrob Chemother 18(Suppl B):19–29

    Article  CAS  Google Scholar 

  39. Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517–528

    Article  CAS  Google Scholar 

  40. Abed Y, Baz M, Boivin G (2006) Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic backgrounds. Antiviral Therapy 11(8):971–976

    CAS  PubMed  Google Scholar 

  41. Aoki FY, Boivin G, Roberts N (2007) Influenza virus susceptibility and resistance to oseltamivir. Antivir Therapy 12(4):603–616

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the City of Izumi for supporting the sample collection. This work was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (“R&D Matching Funds on the Field for Knowledge Integration and Innovation”) and by the contracted research activity for crane conservation with the City of Izumi, Japan. This research was commissioned by the Kagoshima Crane Conservation Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ozawa.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants and/or animals

This research did not involve human or animal participants.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, A.M., Nishi, N., Kojima, I. et al. Transition in genetic constellations of H3N8 and H4N6 low-pathogenic avian influenza viruses isolated from an overwintering site in Japan throughout different winter seasons. Arch Virol 165, 643–659 (2020). https://doi.org/10.1007/s00705-019-04519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04519-z

Navigation