Skip to main content
Log in

Giant viral genomic signatures in the previously reported gut metagenomes of pre-school children in rural India

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A recent study by Ghosh et al. compared the gut microbiomes of 20 preschool children from India and found an association between the gut microbiome and the nutritional status of the child. Here, we explored these metagenomes for the presence of genomic signatures of prokaryotic and eukaryotic viruses. Several of the viral signatures found in all 20 metagenomes belonged to giant viruses (GVs). In addition, we found hits for bacteriophages to several major human pathogens, including Shigella, Salmonella, Escherichia, and Enterobacter. Concurrently, we also detected several antibiotic resistance genes (ARGs) in the metagenomes. All of the ARGs detected in this study (beta-lactam, macrolide, metronidazole, and tetracycline) are associated with mobile genetic elements (MGEs) and have been reported to cause high levels of resistance to their respective antibiotics. Despite recent reports of giant viruses and their genomic signatures in gut microbiota, their role in human physiology remains poorly understood. The effect of cooccurrence of ARGs and GVs in the gut needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Ghosh TS, Gupta SS, Bhattacharya T et al (2014) Gut microbiomes of Indian children of varying nutritional status. PLoS One 9:1–13. https://doi.org/10.1371/journal.pone.0095547

    Article  Google Scholar 

  2. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paule A, Frezza D, Edeas M (2018) Microbiota and phage therapy: future challenges in medicine. Med Sci 6:86. https://doi.org/10.3390/medsci6040086

    Article  Google Scholar 

  4. Kerepesi C, Grolmusz V (2017) The “Giant Virus Finder” discovers an abundance of giant viruses in the Antarctic dry valleys. Arch Virol 162:1671–1676. https://doi.org/10.1007/s00705-017-3286-4

    Article  CAS  PubMed  Google Scholar 

  5. Verneau J, Levasseur A, Raoult D et al (2016) MG-Digger: an automated pipeline to search for giant virus-related sequences in metagenomes. Front Microbiol 7:428. https://doi.org/10.3389/fmicb.2016.00428

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tithi SS, Aylward FO, Jensen RV et al (2018) FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ 6:e4227. https://doi.org/10.7717/peerj.4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen TN, Lukjancenko O, Thomsen MCF et al (2017) MGmapper: reference based mapping and taxonomy annotation of metagenomics sequence reads. PLoS One 12:e0176469. https://doi.org/10.1371/journal.pone.0176469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iversen H, L’Abée-Lund TM, Aspholm M et al (2015) Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol 5:5. https://doi.org/10.3389/fcimb.2015.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colson P, Fancello L, Gimenez G et al (2013) Evidence of the megavirome in humans. J Clin Virol 57:191–200. https://doi.org/10.1016/j.jcv.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  11. Shukla A, Chatterjee A, Kondabagil K (2018) The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol. https://doi.org/10.1093/ve/vex039

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moliner C, Fournier PE, Raoult D (2010) Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34:281–294. https://doi.org/10.1111/j.1574-6976.2009.00209.x

    Article  CAS  PubMed  Google Scholar 

  13. Liu W, Li Y, Learn GH et al (2010) Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467:420–425. https://doi.org/10.1038/nature09442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Auburn S, Barry AE (2017) Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 47:77–85. https://doi.org/10.1016/j.ijpara.2016.08.006

    Article  PubMed  Google Scholar 

  15. Francino MP (2016) Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.01543

    Article  Google Scholar 

  16. Warburton PJ, Amodeo N, Roberts AP (2016) Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J Antimicrob Chemother 71:3333–3339. https://doi.org/10.1093/jac/dkw304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Vries LE, Vallès Y, Agersø Y et al (2011) The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant. PLoS One 6:e21644. https://doi.org/10.1371/journal.pone.0021644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sandberg KD, LaPara TM (2016) The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol Ecol 92:fiw001. https://doi.org/10.1093/femsec/fiw001

    Article  CAS  PubMed  Google Scholar 

  19. Ling AL, Pace NR, Hernandez MT et al (2013) Tetracycline resistance and class 1 integron genes associated with indoor and outdoor aerosols. Environ Sci Technol 47:4046–4052. https://doi.org/10.1021/es400238g

    Article  CAS  PubMed  Google Scholar 

  20. Do TT, Tamames J, Stedtfeld RD et al (2017) Antibiotic resistance gene detection in the microbiome context. Microb Drug Resist 24:542–546. https://doi.org/10.1089/mdr.2017.0199

    Article  CAS  PubMed  Google Scholar 

  21. Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123. https://doi.org/10.1038/nrmicro3399

    Article  CAS  PubMed  Google Scholar 

  22. Fyfe C, Grossman TH, Kerstein K et al (2016) Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med 6:a025395. https://doi.org/10.1101/cshperspect.a025395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verma AK, Verma R, Ahuja V et al (2012) Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiol 12:183. https://doi.org/10.1186/1471-2180-12-183

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zuo T, Lu X-J, Zhang Y et al (2019) Gut mucosal virome alterations in ulcerative colitis. Gut 68:1169–1179. https://doi.org/10.1136/gutjnl-2018-318131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colson P, Aherfi S, La Scola B (2017) Evidence of giant viruses of amoebae in the human gut. Hum Microbiome J 5–6:14–19. https://doi.org/10.1016/J.HUMIC.2017.11.001

    Article  Google Scholar 

  26. Yutin N, Raoult D, Koonin EV (2013) Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol J 10:158. https://doi.org/10.1186/1743-422x-10-1581743-422x-10-158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Kondabagil.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Kondabagil, K. Giant viral genomic signatures in the previously reported gut metagenomes of pre-school children in rural India. Arch Virol 164, 2819–2822 (2019). https://doi.org/10.1007/s00705-019-04387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04387-7

Navigation