Skip to main content
Log in

Genome characterization of the novel lytic Vibrio parahaemolyticus phage vB_VpP_BA6

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A lytic bacteriophage, designated Vibrio phage vB_VpP_BA6, was isolated from sewage collected in Guangzhou, China. The double-stranded DNA genome of phage BA6 is composed of 50,520 bp with a G+C content of 41.77%. It possesses 64 open reading frames relating to phage structure, packaging, host lysis, DNA metabolism, and additional functions. Three tRNAs genes (encoding Pro, Ile and Trp) were detected. Comparison of its genomic features and phylogenetic analysis revealed that phage BA6 is a novel member of the family Podoviridae. This phage may represent a potential therapeutic agent against multidrug-resistant Vibrio parahaemolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin SJ, Hsu KC, Wang HC (2017) Structural insights into the cytotoxic mechanism of Vibrio parahaemolyticus PirA(vp) and PirB(vp) Toxins. Mar Drugs 15(12):1–12

    Google Scholar 

  2. Kalatzis PG, Castillo D, Katharios P et al (2018) Bacteriophage interactions with marine pathogenic Vibrios: implications for phage therapy. Antibiotics (Basel) 7(1):1–23

    Google Scholar 

  3. Xie T, Wu Q, Zhang J et al (2017) Comparison of Vibrio parahaemolyticus isolates from aquatic products and clinical by antibiotic susceptibility, virulence, and molecular characterisation. Food Control 71:315–321

    Article  CAS  Google Scholar 

  4. Xie T, Wu Q, Xu X et al (2015) Prevalence and population analysis of Vibrio parahaemolyticus in aquatic products from South China markets. FEMS Microbiol Lett 362(22):v178

    Article  CAS  Google Scholar 

  5. Xie T, Xu X, Wu Q et al (2016) Prevalence, molecular characterization, and antibiotic susceptibility of Vibrio parahaemolyticus from ready-to-eat foods in China. Front Microbiol 7:1–10

    CAS  Google Scholar 

  6. Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53(3):1355–1362

    Article  PubMed  Google Scholar 

  7. Van Twest R and Kropinski AM (2009) Bacteriophage enrichment from water and soil.  Methods Mol Biol 501:15-21

    Article  CAS  PubMed  Google Scholar 

  8. Kutter E (2009) Phage host range and efficiency of plating. Methods Mol Biol 501:141–149

    Article  CAS  PubMed  Google Scholar 

  9. Xing S, Zhang X, Sun Q et al (2017) Complete genome sequence of a novel, virulent Ahjdlikevirus bacteriophage that infects Enterococcus faecium. Adv Virol 162(12):3843–3847

    CAS  Google Scholar 

  10. Zeng H, He W, Li C, et al (2018) Complete genome analysis of a novel phage GW1 lysing Cronobacter. Arch Virol 164(2):625–628

    Article  CAS  PubMed  Google Scholar 

  11. Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069

    Article  CAS  PubMed  Google Scholar 

  13. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Wang Y, Li S et al (2015) A novel termini analysis theory using HTS data alone for the identification of Enterococcus phage EF4-like genome termini. BMC Genomics 16:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9(4):1–9

    Article  Google Scholar 

  18. Zhao X, Chen C, Shen W et al (2016) Global transcriptomic analysis of interactions between Pseudomonas aeruginosa and bacteriophage PaP3. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  19. Kropinski AM, Lingohr EJ, Ackermann HW (2011) The genome sequence of enterobacterial phage 7-11, which possesses an unusually elongated head. Adv Virol 156(1):149–151

    CAS  Google Scholar 

  20. Han F, Li M, Lin H et al (2014) The novel Shewanella putrefaciens-infecting bacteriophage Spp001: genome sequence and lytic enzymes. J Ind Microbiol Biotechnol 41(6):1017–1026

    Article  CAS  PubMed  Google Scholar 

  21. Katharios P, Kalatzis PG, Kokkari C et al (2017) Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS One 12(12):e190083

    Article  CAS  Google Scholar 

  22. Li M, Jin Y, Lin H et al (2018) Complete genome of a novel lytic Vibrio parahaemolyticus phage VPp1 and characterization of its endolysin for antibacterial activities. J Food Prot 81(7):1117–1125

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Xing S, Fu K et al (2019) Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271. Virus Genes 55(2):218–226

    Article  CAS  PubMed  Google Scholar 

  24. Magill DJ, Shaburova OV, Chesnokova EN et al (2015) Complete nucleotide sequence of phiCHU: a Luz24likevirus infecting Pseudomonas aeruginosa and displaying a unique host range. FEMS Microbiol Lett 362(9):1–3

    Article  CAS  Google Scholar 

  25. Shen X, Li M, Zeng Y et al (2012) Functional identification of the DNA packaging terminase from Pseudomonas aeruginosa phage PaP3. Adv Virol 157(11):2133–2141

    CAS  Google Scholar 

  26. Glukhov AS, Krutilina AI, Shlyapnikov MG et al (2012) Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions. PLoS One 7(12):e51163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fouts DE, Klumpp J, Bishop-Lilly KA et al (2013) Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podoviruses to other N4-like phages reveal extensive genetic diversity. Virol J 10:1–13

    Article  CAS  Google Scholar 

  28. Hardies SC, Hwang YJ, Hwang CY et al (2013) Morphology, physiological characteristics, and complete sequence of marine bacteriophage varphiRIO-1 infecting Pseudoalteromonas marina. J Virol 87(16):9189–9198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nobrega FL, Vlot M, de Jonge PA et al (2018) Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol 16(12):760–773

    Article  CAS  PubMed  Google Scholar 

  30. Katharios P, Kalatzis PG, Kokkari C et al (2017) Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS One 12(12):e190083

    Article  CAS  Google Scholar 

  31. Dwivedi B, Xue B, Lundin D et al (2013) A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. BMC Evol Biol 13:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Key R&D Program of China (2017YFC1601201), the GDAS’ Project of Science and Technology Development (No. 2019GDASYL-0103011), the Key Project of Natural Science Foundation of China (31730070) and GDAS’ Special Project of Science and Technology Development (2017GDASCX-0201) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingping Wu.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Transmission electron microscopy image of vB_VpP_BA6

Supplementary Fig. S2

Terminal sequence determination in the vB_VpP_BA6 genome. The panels show the run-off sequencing spectrograms of the phage vB_VpP_BA6 genome using a forward primer (Forward: 5’-CTGGTGGAAGAACT GTAGAA-3′) and a reverse primer (Reverse: 5’-ATACCCGTTGCTTATCATC-3’). (A) The 3’-terminal sequence. (B) The 5’-terminal sequence

Supplementary Table S1

Lytic spectra of vB_VpP_BA6 based on 30 bacterial strains of Vibrio parahaemolyticus. Clear lysis zone (+), no lysis zone (−)

Supplementary Table S2

Open reading frames in the phage vB_VpP_BA6 genome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Liang, Y., Su, R. et al. Genome characterization of the novel lytic Vibrio parahaemolyticus phage vB_VpP_BA6. Arch Virol 164, 2627–2630 (2019). https://doi.org/10.1007/s00705-019-04351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04351-5

Navigation