Skip to main content

Advertisement

Log in

Discovery of a virus of the species Enterovirus F in goats

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here, we report two novel enteroviruses, designated as SD-S67 and SD-S68, isolated from a goat farm. Their complete genome sequences were determined and found to be 7455 and 7465 nucleotides in length, respectively. Molecular characterization revealed that SD-S67 is closely related to bovine enterovirus strain 261 and that SD-S68 to caprine enterovirus strain CEV-JL14. Phylogenetic analysis showed that SD-S67 clustered with members of the species Enterovirus F, and that SD-S68 clustered with enteroviruses of goats and sheep. Recombination analysis showed that SD-S67 is likely to have undergone several recombination events in the process of its evolution. To the best of our knowledge, this is the first report of an enterovirus F isolate from a goat and of a coinfection with enteroviruses of different species in the same goat herd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Anbalagan S, Hesse RA, Hause BM (2014) First Identification and Characterization of Porcine Enterovirus G in the United States. PloS One 9(5):e97517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boros A, Pankovics P, Knowles NJ, Reuter G (2012) Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 93:1941–1951

    Article  CAS  PubMed  Google Scholar 

  3. Bunke J, Receveur K, Oeser AC, Fickenscher H, Zell R, Krumbholz A (2018) High genetic diversity of porcine enterovirus G in Schleswig-Holstein, Germany. Arch Virol 163:489–493

    Article  CAS  PubMed  Google Scholar 

  4. He H, Tang C, Chen XN, Yue H, Ren YP, Liu Y, Zhang B (2017) Isolation and characterization of a new enterovirus F in yak feces in the Qinghai-Tibetan Plateau. Arch Virol 162:523–527

    Article  CAS  PubMed  Google Scholar 

  5. Holland JJ, Mc LL, Hoyer BH, Syverton JT (1960) Enteroviral ribonucleic acid. II. Biological, physical, and chemical studies. J Exp Med 112:841–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kyriakopoulou Z, Pliaka V, Amoutzias GD, Markoulatos P (2015) Recombination among human non-polio enteroviruses: implications for epidemiology and evolution. Virus genes 50:177–188

    Article  CAS  PubMed  Google Scholar 

  8. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Hu J, Lin Q, Wang X, Zheng B, Zhang Z (2019) Epidemiological investigation on enterovirus infections in cattle/sheep/goat herds in Shandong Province. Chin J Vet Sci 39:223–227

    Google Scholar 

  10. Li YL, Chang JT, Wang Q, Yu L (2012) Isolation of two Chinese bovine enteroviruses and sequence analysis of their complete genomes. Arch Virol 157:2369–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu AP, Tan H, Xie Q, Chen BT, Liu XF, Zhang Y (2014) Genetic evidence for recombination and mutation in the emergence of human enterovirus 71. Chin J Virol 30:572–578

    CAS  Google Scholar 

  12. Liu D, Liu C, Hu J, Hang L, Li X, Wei Y, Zhu H, Zhang Q, Wang X (2018) Construction and evaluation of HA-epitope-tag introduction onto the VP1 structural protein of a novel HY12 enterovirus. Virology 525:106–116

    Article  CAS  PubMed  Google Scholar 

  13. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin D, Murrell B, Khoosal A, Muhire B (2017) Detecting and analyzing genetic recombination using RDP4. Methods Mol Biol 1525:433–460

    Article  CAS  PubMed  Google Scholar 

  15. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

    Article  PubMed  PubMed Central  Google Scholar 

  16. McClenahan SD, Scherba G, Borst L, Fredrickson RL, Krause PR, Uhlenhaut C (2013) Discovery of a bovine enterovirus in alpaca. PloS One 8:e68777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikolaidis M, Mimouli K, Kyriakopoulou Z, Tsimpidis M, Tsakogiannis D, Markoulatos P, Amoutzias GD (2019) Large-scale genomic analysis reveals recurrent patterns of intertypic recombination in human enteroviruses. Virology 526:72–80

    Article  CAS  PubMed  Google Scholar 

  18. Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Omatsu T, Tsuchiaka S, Hirata T, Shiroma Y, Okazaki S, Katayama Y, Oba M, Nishiura N, Sassa Y, Furuya T, Nagai M, Ochiai H, Tamaki S, Mizutani T (2014) Detection of enterovirus genome sequence from diarrheal feces of goat. Virus Genes 48:550–552

    Article  CAS  PubMed  Google Scholar 

  20. Pu XF, Qian YJ, Yu Y, Shen HX (2019) Echovirus plays a major role in natural recombination in the coxsackievirus B group. Arch Virol 164:853–860

    Article  CAS  PubMed  Google Scholar 

  21. Reed L, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  22. Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3:241–251

    Article  CAS  PubMed  Google Scholar 

  23. Schwerdt C, Schaffer F (1955) Some physical and chemical properties of purified poliomyelitis virus preparations. Ann N Y Acad Sci 61(4):740–750

    Article  CAS  PubMed  Google Scholar 

  24. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang M, Wang X, Zhu L (2016) Detection of ovine enterovirus from sheep/goat with severe diarrhea. Chin J Vet Sci 36(10):1692–1695

    Google Scholar 

  26. Wang M, He J, Lu H, Liu Y, Deng Y, Zhu L, Guo C, Tu C, Wang X (2017) A novel enterovirus species identified from severe diarrheal goats. PloS One 12:e0174600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woodman A, Lee KM, Janissen R, Gong YN, Dekker NH, Shih SR, Cameron CE (2019) Predicting intraserotypic recombination in Enterovirus 71. J Virol 93:e02057-18

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zell R, Krumbholz A, Dauber M, Hoey E, Wutzler P (2006) Molecular-based reclassification of the bovine enteroviruses. J Gen Virol 87:375–385

    Article  CAS  PubMed  Google Scholar 

  29. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, Lindberg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T, Ictv Report C (2017) ICTV virus taxonomy profile: picornaviridae. J Gen Virol 98:2421–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu L, Xing Z, Gai X, Li S, San Z, Wang X (2014) Identification of a novel enterovirus E isolates HY12 from cattle with severe respiratory and enteric diseases. PloS One 9:e97730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Key Research & Development Program 2017YFD0500104 and 2016YFD0500904 and the National Natural Science Foundation of China (31572531).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design, Xinping Wang; virus isolation, Xiaoran Chang; PCR amplification, Xu Wang and Qian Lin; analysis and interpretation, Xiaoran Chang, Junying Hu, and Menglu Cai; sample collection, Junying Hu and Xin Li, confirmation, Zecai Zhang and Weiyu Wang; drafting and editing of the manuscript, Xiaoran Chang and Xinping Wang. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinping Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

The article does not contain any studies with animals performed by any of the authors.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Lin, Q., Hu, J. et al. Discovery of a virus of the species Enterovirus F in goats. Arch Virol 164, 2551–2558 (2019). https://doi.org/10.1007/s00705-019-04331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04331-9

Navigation