Skip to main content
Log in

Phylogenetic analysis of novel posaviruses detected in feces of Japanese pigs with posaviruses and posa-like viruses of vertebrates and invertebrates

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Posaviruses and posa-like viruses are unclassified viruses with sequence similarity to viruses of the order Picornavirales. They have been reported in various vertebrates and invertebrates. We identified 11 posavirus-like sequences in porcine feces and performed phylogenic analysis. Previously reported Japanese posaviruses and those identified in this study clustered with posavirus 1, 4, and 7 and husavirus 1, while five viruses branched into three independent lineages, tentatively named posavirus 10, 11, and 12. Interestingly, posaviruses, except for posavirus 8 and 9, husaviruses, and rasaviruses, formed a cluster consisting of viruses only from pigs, humans, and rats, while posavirus 8 and 9, fisavirus, and basaviruses clustered with posa-like viruses from invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Le Gall O, Christian P, Fauquet CM, King AM, Knowles NJ, Nakashima N, Stanway G, Gorbalenya AE (2008) Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 153:715–727. https://doi.org/10.1007/s00705-008-0041-x

    Article  CAS  PubMed  Google Scholar 

  2. Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E (2011) The fecal virome of pigs on a high-density farm. J Virol 85:11697–11708. https://doi.org/10.1128/JVI.05217-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21:1462–1477. https://doi.org/10.1101/gr.121426.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang B, Tang C, Yue H, Ren Y, Song Z (2014) Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China. J Gen Virol 95:1603–1611

    Article  CAS  PubMed  Google Scholar 

  5. Hause BM, Hesse RA, Anderson GA (2015) Identification of a novel Picornavirales virus distantly related to posavirus in swine feces. Virus Genes 51:144–147. https://doi.org/10.1007/s11262-015-1215-8

    Article  CAS  PubMed  Google Scholar 

  6. Hause BM, Palinski R, Hesse R, Anderson G (2016) Highly diverse posaviruses in swine faeces are aquatic in origin. J Gen Virol 97:1362–1367. https://doi.org/10.1099/jgv.0.000461

    Article  CAS  PubMed  Google Scholar 

  7. Sano K, Naoi Y, Kishimoto M, Masuda T, Tanabe H, Ito M, Niira K, Haga K, Asano K, Tsuchiaka S, Omatsu T, Furuya T, Katayama Y, Oba M, Ouchi Y, Yamasato H, Ishida M, Shirai J, Katayama K, Mizutani T, Nagai M (2016) Identification of further diversity among posaviruses. Arch Virol 161:3541–3548

    Article  CAS  PubMed  Google Scholar 

  8. Oude Munnink BB, Cotten M, Deijs M, Jebbink MF, Bakker M, Farsani SM, Canuti M, Kellam P, van der Hoek L (2015) A novel genus in the order Picornavirales detected in human stool. J Gen Virol 96:3440–3443

    Article  CAS  PubMed  Google Scholar 

  9. Oude Munnink BB, Phan MVT, VIZIONS Consortium, Simmonds P, Koopmans MPG, Kellam P, van der Hoek L, Cotten M (2017) Characterization of posa and posa-like virus genomes in fecal samples from humans, pigs, rats, and bats collected from a single location in Vietnam. Virus Evol 3(2):vex022. https://doi.org/10.1093/ve/vex022

    Article  PubMed  PubMed Central  Google Scholar 

  10. Siqueira JD, Dominguez-Bello MG, Contreras M, Lander O, Caballero-Arias H, Xutao D, Noya-Alarcon O, Delwart E (2018) Complex virome in feces from Amerindian children in isolated Amazonian villages. Nat Commun 9(1):4270. https://doi.org/10.1038/s41467-018-06502-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reuter G, Pankovics P, Delwart E, Boros Á (2015) A novel posavirus-related single-stranded RNA virus from fish (Cyprinus carpio). Arch Virol 160:565–568. https://doi.org/10.1007/s00705-014-2304-z

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Yang S, Shan T, Hou R, Liu Z, Li W, Guo L, Wang Y, Chen P, Wang X, Feng F, Wang H, Chen C, Shen Q, Zhou C, Hua X, Cui L, Deng X, Zhang Z, Qi D, Delwart E (2017) Virome comparisons in wild-diseased and healthy captive giant pandas. Microbiome 5(1):90. https://doi.org/10.1186/s40168-017-0308-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duraisamy R, Akiana J, Davoust B, Mediannikov O, Michelle C, Robert C, Parra HJ, Raoult D, Biagini P, Desnues C (2018) Detection of novel RNA viruses from free-living gorillas, Republic of the Congo: genetic diversity of picobirnaviruses. Virus Genes 54:256–271. https://doi.org/10.1007/s11262-018-1543-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Webster CL, Longdon B, Lewis SH, Obbard DJ (2016) Twenty-five new viruses associated with the Drosophilidae (Diptera). Evol Bioinform Online 12(Suppl 2):13–25. https://doi.org/10.4137/ebo.s39454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540:539–543. https://doi.org/10.1038/nature20167

    Article  CAS  PubMed  Google Scholar 

  16. Nagai M, Omatsu T, Aoki H, Otomaru K, Uto T, Koizumi M, Minami-Fukuda F, Takai H, Murakami T, Masuda T, Yamasato H, Shiokawa M, Tsuchiaka S, Naoi Y, Sano K, Okazaki S, Katayama Y, Oba M, Furuya T, Shirai J, Mizutani T (2015) Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus. Arch Virol 160:2491–2501. https://doi.org/10.1007/s00705-015-2543-7

    Article  CAS  PubMed  Google Scholar 

  17. Oka T, Takagi H, Tohya Y (2014) Development of a novel single step reverse genetics system for feline calicivirus. J Virol Methods 207:178–181. https://doi.org/10.1016/j.jviromet.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  18. Oka T, Lu Z, Phan T, Delwart EL, Saif LJ, Wang Q (2016) Genetic characterization and classification of human and animal sapoviruses. PLoS One 11(5):e0156373. https://doi.org/10.1371/journal.pone.0156373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oka T, Doan YH, Haga K, Mori K, Ogawa T, Yamazaki A (2017) Genetic characterization of rare genotype GII.5 sapovirus strain detected from a suspected food-borne gastroenteritis outbreak among adults in Japan in 2010. Jpn J Infect Dis 70:223–224. https://doi.org/10.7883/yoken.JJID.2016.468

    Article  PubMed  Google Scholar 

  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant numbers: 15K07718 and 18K05977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nagai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This study did not involve any human participants or animals.

Informed consent

Not applicable.

Additional information

Handling Editor: Helene Sanfacon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

Genome structure of Ishi-Im7/JPN/2016 with the putative conserved domains identified using the CCD search. (PPTX 37 kb)

Supplementary material 2 (XLSX 18 kb)

Supplementary material 3 (TXT 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, H., Sunaga, F., Ochiai, H. et al. Phylogenetic analysis of novel posaviruses detected in feces of Japanese pigs with posaviruses and posa-like viruses of vertebrates and invertebrates. Arch Virol 164, 2147–2151 (2019). https://doi.org/10.1007/s00705-019-04289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04289-8

Navigation