Skip to main content
Log in

Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bacterial wilt caused by Ralstonia spp., soil-borne Gram-negative bacteria, is considered one of the most important plant diseases in tropical and subtropical regions of the world. A large number of bacteriophages capable of lysing or physiologically reprogramming cells of Ralstonia spp. have been reported in Asia. Despite the potential use of these organisms in the management of bacterial wilt, information on viruses that infect Ralstonia spp. is nonexistent in the Americas. We isolated a virus that infects Ralstonia spp. from a soil sample in the state of Minas Gerais, Brazil. Microscopy and genomic and phylogenetic analysis allowed us to classify the virus as a member of the family Podoviridae, genus Phikmvvirus. In spite of its relationship to Ralstonia virus RSB3, an Asian isolate, genomic and biological characteristics showed that the virus isolated in Brazil, tentatively named “Ralstonia virus phiAP1” (phiAP1), belongs to a new species. phiAP1 has EPS depolymerase activity and contains two putative virion-associated peptidoglycan hydrolases (VAPGHs), which reveals a robust mechanism of pathogenesis. Furthermore, phiAP1 specifically infects Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii, causing cell lysis, but it was not able to infect thirteen other bacteria that were tested. Together, these characteristics highlight the biotechnological potential of this virus for the management of bacterial wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cassman N, Prieto-Davó A, Walsh K et al (2012) Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol 14:3043–3065. https://doi.org/10.1111/j.1462-2920.2012.02891.x

    Article  CAS  PubMed  Google Scholar 

  2. Dutilh BE (2014) Metagenomic ventures into outer sequence space. Bacteriophage 4:3–5. https://doi.org/10.4161/21597081.2014.979664

    Article  Google Scholar 

  3. Klumpp J, Fouts DE, Sozhamannan S (2012) Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2:190–199. https://doi.org/10.4161/bact.22111

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57. https://doi.org/10.2174/138920110790725302

    Article  CAS  PubMed  Google Scholar 

  5. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:1–11. https://doi.org/10.1155/2012/326452

    Article  Google Scholar 

  6. Oliveira H, Sillankorva S, Merabishvili M et al (2015) Unexploited opportunities for phage therapy. Front Pharmacol 6:1–4. https://doi.org/10.3389/fphar.2015.00180

    Article  CAS  Google Scholar 

  7. Álvarez B, Biosca EG, López MM (2010) On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. Technol Educ Top Appl Microbiol Microb Biotechnol 1:267–279

    Google Scholar 

  8. Mansfield J, Genin S, Magori S et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prior P, Ailloud F, Dalsing BL et al (2016) Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genom 17:90. https://doi.org/10.1186/s12864-016-2413-z

    Article  CAS  Google Scholar 

  10. Safni I, Cleenwerck I, De Vos P et al (2014) Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii. Int J Syst Evol Microbiol 64:3087–3103. https://doi.org/10.1099/ijs.0.066712-0

    Article  CAS  PubMed  Google Scholar 

  11. Hayward AC (1991) Biology and edidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  12. Yuliar Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ 30:1–11. https://doi.org/10.1264/jsme2.ME14144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen C, Prior P, Hayward A (2005) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Saint Paul, USA

    Google Scholar 

  14. Wang JF, Lin CH (2005) Colonization capacity of Ralstonia solanacearum tomato strains differing in aggressiveness on tomatoes and weeds. In: Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Saint Paul, USA, pp 73–79

    Google Scholar 

  15. Toyoda H, Kakutani K, Ikeda S et al (1991) Characterization of deoxyribonucleic acid of virulent bacteriophage and its infectivity to host bacteria, Pseudomonas solanacearum. J Phytopathol 131:11–21. https://doi.org/10.1111/j.1439-0434.1991.tb04566.x

    Article  CAS  Google Scholar 

  16. Ozawa H, Tanaka H, Ichinose Y et al (2001) Bacteriophage P4282, a parasite of Ralstonia solanacearum, encodes a bacteriolytic protein important for lytic infection of its host. Mol Genet Genom 265:95–101. https://doi.org/10.1007/s004380000389

    Article  CAS  Google Scholar 

  17. Kawasaki T, Narulita E, Matsunami M et al (2016) Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum. Virology 492:73–81. https://doi.org/10.1016/j.virol.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  18. Kawasaki T, Shimizu M, Satsuma H et al (2009) Genomic characterization of Ralstonia solanacearum phage φRSB1, a T7-like wide-host-range phage. J Bacteriol 91:422–427. https://doi.org/10.1128/JB.01263-08

    Article  CAS  Google Scholar 

  19. Addy HS, Askora A, Kawasaki T et al (2012) Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by φRSM filamentous phages. Phytopathology 102:469–477. https://doi.org/10.1094/PHYTO-11-11-0319-R

    Article  CAS  PubMed  Google Scholar 

  20. Yamada T (2012) Bacteriophages of Ralstonia solanacearum: their diversity and utilization as biocontrol agents in agriculture. In: Kurtboke I (ed) Bacteriophages. InTech China, Shanghai, pp. 113–138. http://www.intechopen.com/books/bacteriophages/bacteriophages-of-ralstonia-solanacearum-their-diversity-and-utilization-as-biocontrol-agents-in-agr

    Google Scholar 

  21. Van Truong Thi B, Pham Khanh NH, Namikawa R et al (2016) Genomic characterization of Ralstonia solanacearum phage ϕRS138 of the family Siphoviridae. Arch Virol 161:483–486. https://doi.org/10.1007/s00705-015-2654-1

    Article  CAS  Google Scholar 

  22. Adams MH (1959) Bacteriophages. Interscience Publishers, New York

    Google Scholar 

  23. Yamada T, Kawasaki T, Nagata S et al (2007) New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153:2630–2639. https://doi.org/10.1099/mic.0.2006/001453-0

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Russel D (2001) Molecular cloning—a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  25. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  26. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Besemer J, Borodovsky M (1999) Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27:3911–3920. https://doi.org/10.1093/nar/27.19.3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  29. Krogh A, Larsson B, von Heijne G, Sonnhammer E (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  30. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  31. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371. https://doi.org/10.1038/nprot.2009.2

    Article  CAS  PubMed  Google Scholar 

  32. Marchler-Bauer A, Zheng C, Chitsaz F et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:1–5. https://doi.org/10.1093/nar/gks1243

    Article  CAS  Google Scholar 

  33. Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56. https://doi.org/10.1016/S0097-8485(01)00099-7

    Article  CAS  PubMed  Google Scholar 

  34. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313:1003–1011. https://doi.org/10.1006/jmbi.2001.5102

    Article  CAS  PubMed  Google Scholar 

  35. Macke TJ, Ecker DJ, Gutell RR et al (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735. https://doi.org/10.1093/nar/29.22.4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Darling AE, Mau B, Perna NT (2010) Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. https://doi.org/10.1371/journal.pone.0011147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol 11:2775–2777. https://doi.org/10.1111/j.1462-2920.2009.01970.x

    Article  PubMed  Google Scholar 

  39. Mahadevan P, Seto D (2009) Data mining pathogen genomes using GeneOrder and CoreGenes: gene order, synteny, and proteomes. Int J Comput Biol Drug Des 2:100–114

    Article  CAS  PubMed  Google Scholar 

  40. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028. https://doi.org/10.1093/bioinformatics/btm039

    Article  CAS  PubMed  Google Scholar 

  42. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277. https://doi.org/10.1371/journal.pone.0108277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  44. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  45. Moak M, Molineux IJ (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 51:1169–1183. https://doi.org/10.1046/j.1365-2958.2003.03894.x

    Article  CAS  PubMed  Google Scholar 

  46. Welker P, Geist B, Fruhauf JH et al (2007) Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb. Am J Physiol Regul Integr Comp Physiol 292:R1328–R1337. https://doi.org/10.1152/ajpregu.00166.2006

    Article  CAS  PubMed  Google Scholar 

  47. Pantůček R, Rosypalová A, Doškař J et al (2008) The polyvalent staphylococcal phage phi812: its host-range mutants and related phages. Virology 246:241–252. https://doi.org/10.1006/viro.1998.9203

    Article  Google Scholar 

  48. Ceyssens PJ, Lavigne R, Mattheus W et al (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the φKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931. https://doi.org/10.1128/JB.00831-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lavigne R, Burkal’tseva MV, Robben J et al (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59. https://doi.org/10.1016/S0042-6822(03)00123-5

    Article  CAS  PubMed  Google Scholar 

  50. Yu X, Xu Y, Gu Y et al (2017) Characterization and genomic study of “phiKMV-Like” phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 7:13068. https://doi.org/10.1038/s41598-017-13363-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gill JJ, Summer EJ, Russell WK et al (2011) Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J Bacteriol 193:5300–5313. https://doi.org/10.1128/JB.05287-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamada T, Satoh S, Ishikawa H et al (2010) A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 398:135–147. https://doi.org/10.1016/j.virol.2009.11.043

    Article  CAS  PubMed  Google Scholar 

  53. Adriaenssens EM, Ceyssens PJ, Dunon V et al (2011) Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, belonging to the “phiKMV-Like Viruses”. Appl Environ Microbiol 77:3443–3450. https://doi.org/10.1128/AEM.00128-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahern SJ, Das M, Bhowmick TS et al (2014) Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J Bacteriol 196:459–471. https://doi.org/10.1128/JB.01080-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kulakov LA, Ksenzenko VN, Shlyapnikov MG et al (2009) Genomes of “phiKMV-like viruses” of Pseudomonas aeruginosa contain localized single-strand interruptions. Virology 391:1–4. https://doi.org/10.1016/j.virol.2009.06.024

    Article  CAS  PubMed  Google Scholar 

  56. Lammens E, Ceyssens P-J, Voet M et al (2009) Representational difference analysis (RDA) of bacteriophage genomes. J Microbiol Methods 77:207–213. https://doi.org/10.1016/j.mimet.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  57. Lynch KH, Abdu AH, Schobert M, Dennis JJ (2013) Genomic characterization of JG068, a novel virulent podovirus active against Burkholderia cenocepacia. BMC Genom 14:574. https://doi.org/10.1186/1471-2164-14-574

    Article  CAS  Google Scholar 

  58. Kawasaki T, Shimizu M, Satsuma H et al (2009) Genomic characterization of Ralstonia solanacearum phage RSB1, a T7-like wide-host-range phage. J Bacteriol 191:422–427. https://doi.org/10.1128/JB.01263-08

    Article  CAS  PubMed  Google Scholar 

  59. Adams MJ, King AMQ, Carstens EB (2013) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). Arch Virol 158:2023–2030. https://doi.org/10.1007/s00705-013-1688-5

    Article  CAS  PubMed  Google Scholar 

  60. Carstens EB (2010) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155:133–146. https://doi.org/10.1007/s00705-009-0547-x

    Article  CAS  PubMed  Google Scholar 

  61. Lai MJ, Chang KC, Huang SW et al (2016) The tail associated protein of Acinetobacter baumannii phage qab6 is the host specificity determinant possessing exopolysaccharide depolymerase activity. PLoS One 11:1–14. https://doi.org/10.1371/journal.pone.0153361

    Article  CAS  Google Scholar 

  62. Olszak T, Shneider MM, Latka A et al (2017) The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-16411-4

    Article  CAS  Google Scholar 

  63. Ailloud F, Lowe T, Cellier G et al (2015) Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genom 16:270. https://doi.org/10.1186/s12864-015-1474-8

    Article  CAS  Google Scholar 

  64. Roach DR, Sjaarda DR, Castle AJ, Svircev AM (2013) Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl Environ Microbiol 79:3249–3256. https://doi.org/10.1128/AEM.00067-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scholl D, Adhya S, Merril C (2005) Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71:4872–4874. https://doi.org/10.1128/AEM.71.8.4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Denny TP (1995) Involvement of bacterial polysaccharides in plant pathogenesis. Annu Rev Phytopathol 33:173–197. https://doi.org/10.1146/annurev.py.33.090195.001133

    Article  CAS  PubMed  Google Scholar 

  67. Genin S, Boucher CA (2002) Ralstonia solanacearum: secretes of a major pathogen unveiled by analysis of its genome. Mol Plant Pathol 3:111–118

    Article  PubMed  Google Scholar 

  68. Malnoy MM, Faize M, Venisse J-SJ-S et al (2005) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:632–638. https://doi.org/10.1007/s00299-004-0855-2

    Article  CAS  PubMed  Google Scholar 

  69. Kim WS, Salm H, Geider K (2004) Expression of bacteriophage φEa1h lysozyme in Escherichia coli and its activity in growth inhibition of Erwinia amylovora. Microbiology 150:2707–2714. https://doi.org/10.1099/mic.0.27224-0

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646. https://doi.org/10.1105/tpc.015842.nb-lrr

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodríguez-Rubio L, Martínez B, Donovan DM et al (2013) Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 39:427–434. https://doi.org/10.3109/1040841X.2012.723675

    Article  CAS  PubMed  Google Scholar 

  72. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins—application approaches. Curr Med Chem 22:1757–1773. https://doi.org/10.2174/0929867322666150209152851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Evanics F, Hwang PM, Cheng Y et al (2006) Topology of an outer-membrane enzyme: measuring oxygen and water contacts in solution NMR studies of PagP. J Am Chem Soc 128:8256–8264. https://doi.org/10.1021/ja0610075

    Article  CAS  PubMed  Google Scholar 

  74. Jia W, El Zoeiby A, Petruzziello TN et al (2004) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279:44966–44975. https://doi.org/10.1074/jbc.M404963200

    Article  CAS  PubMed  Google Scholar 

  75. Murata T, Tseng W, Guina T et al (2007) PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium. J Bacteriol 189:7213–7222. https://doi.org/10.1128/JB.00973-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barbosa TM, Levy SB (2000) Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182:3467–3474. https://doi.org/10.1128/jb.182.12.3467-3474.2000.updated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Briers Y, Peeters LM, Volckaert G, Lavigne R (2011) The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin. Bacteriophage 1:25–30. https://doi.org/10.4161/bact.1.1.14868

    Article  PubMed  PubMed Central  Google Scholar 

  78. Summer EJ, Berry J, Tran TAT et al (2007) Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol 373:1098–1112. https://doi.org/10.1016/j.jmb.2007.08.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Murilo Zerbini and the members of our laboratory for helpful discussions, Karla Ribeiro and Gilmar Valente (Núcleo de Microscopia e Microanálise, CCB/UFV) for assistance with TEM analysis, and Edvaldo Barros (Núcleo de Análise de Biomoléculas, CCB/UFV) for assistance with proteomic analysis. We also thank Rosa de Lima Ramos Mariano and Elineide Barbosa de Souza (Dep. de Fitossanidade, UFRPE), Carlos Alberto Lopes (EMBRAPA-CNPH), Valmir Duarte (Agronômica Laboratório de Diagnóstico Fitossanitário), Acelino Couto Alfenas and José Rogério de Oliveira (Dep. de Fitopatologia, UFV), Caitilyn Allen (University of Wisconsin-Madison) and Rosalee Albuquerque Coelho Neto (Instituto Nacional de Pesquisa da Amazônia) for providing the bacterial isolates used in this work. ASX was the recipient of a FAPEMIG graduate fellowship, TTML was the recipient of a CNPq undergraduate fellowship, FOS and FPS were the recipients of CNPq graduate fellowships.

Funding

This study was funded by Grant APQ-01926-14 (FAPEMIG) to PAZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poliane Alfenas-Zerbini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Xavier, A., da Silva, F.P., Vidigal, P.M.P. et al. Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria. Arch Virol 163, 3275–3290 (2018). https://doi.org/10.1007/s00705-018-4006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4006-4

Navigation