Skip to main content
Log in

Genomic analysis of a novel isolate Heliothis virescens ascovirus 3i (HvAV-3i) and identification of ascoviral repeat ORFs (aros)

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Ascoviruses are circular double-stranded DNA viruses that infect insects. Herein we sequenced and analyzed the genome of the previously unrecorded ascovirus isolate Heliothis virescens ascovirus 3i (HvAV-3i). The genome size is 185,650 bp with 181 hypothetical open reading frames (ORFs). Additionally, definition based on ascovirus repeated ORFs (aros) is proposed; whereby the 29 aros from all sequenced Ascoviridae genomes are divided into six distinct groups. The topological relationship among the isolates of Heliothis virescens ascovirus 3a is (HvAV-3f, {HvAV-3h, [HvAV-3e, (HvAV-3g, HvAV-3i)]}) with every clade well supported by a Bayesian posterior probability of 1.00 and a Bootstrap value of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Arai E, Ishii K, Ishii H, Sagawa S, Makiyama N, Mizutani T, Omatsu T, Katayama Y, Kunimi Y, Inoue MN, Nakai M (2018) An ascovirus isolated from Spodoptera litura (Noctuidae: Lepidoptera) transmitted by the generalist endoparasitoid Meteorus pulchricornis (Braconidae: Hymenoptera). J Gen Virol. https://doi.org/10.1099/jgv.0.001035

    Article  PubMed  Google Scholar 

  3. Asgari S, Bideshi D, Bigot Y, Federici BA, Cheng XW (2017) ICTV report consortium. ICTV virus taxonomy profile: ascoviridae. J Gen Virol 98:4–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Asgari S, Davis J, Wood D, Wilson P, McGrath A (2007) Sequence and organization of the Heliothis virescens ascovirus genome. J Gen Virol 88:1120–1132

    Article  PubMed  CAS  Google Scholar 

  5. Bideshi DK, Demattei MV, Rouleux-Bonnin F, Stasiak K, Tan Y, Bigot S, Bigot Y, Federici BA (2006) Genomic sequence of Spodoptera frugiperda ascovirus 1a, an enveloped, double stranded DNA insect virus that manipulates apoptosis for viral reproduction. J Virol 80:11791–11805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bideshi DK, Renault S, Stasiak K, Federici BA, Bigot Y (2003) Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria. J Gen Virol 84:2531–2544

    Article  PubMed  CAS  Google Scholar 

  7. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol E 17:540–552

    Article  CAS  Google Scholar 

  8. Cheng XW, Carner GR, Brown TM (1999) Circular configuration of the genome of ascoviruses. J Gen Virol 80:1537–1540

    Article  PubMed  CAS  Google Scholar 

  9. Federici BA, Vlak JM, Hamm JJ (1990) Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol 71(8):1661–1668

    Article  PubMed  CAS  Google Scholar 

  10. Hamm JJ, Styer EL, Federici BA (1998) Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology. J Invertebr Pathol 72:138–146

    Article  PubMed  CAS  Google Scholar 

  11. Hamm JJ, Pair SD, Marti OG (1986) Incidence and host range of a new ascovirus isolated from fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 69(3):524–531

    Article  Google Scholar 

  12. Hu J, Gu XS, Li SJ, Huang GH (2016) Infection characterization by Spodoptera frugiper ascovirus isolate 84-36 and growing development of infected Spodoptera exigua larvae. Chin J Biol Control 32:189–195

    Google Scholar 

  13. Hu J, Wang X, Zhang Y, Zheng Y, Zhou S, Huang GH (2016) Characterization and growing development of Spodoptera exigua (Lepidoptera: Noctuidae) larvae infected by Heliothis virescens ascovirus 3h (HvAV-3h). J Econ Entomol 109:2020–2026

    Article  PubMed  Google Scholar 

  14. Huang GH, Garretson TA, Cheng XH, Holztrager MS, Li SJ, Wang X, Cheng XW (2012) Phylogenetic position and replicaton kinetics of Heliothis virescens ascovirus 3h (HvAV-3h) isolated from Spodoptera exigua. PLoS ONE 7:e40225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Huang GH, Hou DH, Wang M, Cheng XW, Hu Z (2017) Genome analysis of Heliothis virescens ascovirus 3h isolated from China. Virol Sin 32:147–154

    Article  PubMed  CAS  Google Scholar 

  16. Huang GH, Wang YS, Wang X, Garretson TA, Dai LY, Zhang CX, Cheng XW (2012) Genomic sequence of Heliothis virescens ascovirus 3g isolated from Spodoptera exigua. J Virol 86:12467–12468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kang W, Suzuli M, Evgueni Z, Okano K, Maeda S (1999) Characterization of baculovirus repeated open reading frames (bro) in Bombyx mori nucleopolyhedrovirus. J Virol 73:10339–10345

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773

    Google Scholar 

  19. Li SJ, Hopkins RJ, Zhao YP, Zhang YX, Hu J, Chen XY, Xu Z, Huang GH (2016) Imperfection works: survival, transmission and persistence in the system of Heliothis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua. Sci Rep 6:21296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li SJ, Wang X, Zhou ZS, Zhu J, Hu J, Zhao YP, Zhou GW, Huang GH (2013) A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3h (HvAV-3h). PLoS ONE 8:e85704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Parsons J (1995) Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci 11:615–619

    PubMed  CAS  Google Scholar 

  23. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  24. Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49(2):306–362

    Article  PubMed  CAS  Google Scholar 

  25. Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402(6760):402–404

    Article  PubMed  CAS  Google Scholar 

  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang LH, Xue JL, Seaborn CP, Arif BM, Cheng XW (2006) Sequence and organization of the Trichoplusia ni ascovirus 2c (Ascoviridae) genome. Virology 354:167–177

    Article  PubMed  CAS  Google Scholar 

  28. Wei YL, Hu J, Li SJ, Chen ZS, Cheng XW, Huang GH (2014) Genome sequence and organization analysis of Heliothis virescens ascovirus 3f isolated from a Helicoverpa zea larva. J Invertebr Pathol 122:40–43

    Article  PubMed  CAS  Google Scholar 

  29. Zemskov EA, Kang W, Maeda S (2000) Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol 74:6784–6789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jue Hu, Hai-Zhou Liu and Lei Zhang for their help in virus amplification and data analysis. The authors would also like to acknowledge Bi-Chao Xu from the Core Facility and Technical Support of Wuhan Institute of Virology for the technical assistance in SEM and TEM analysis. We thank Dr. Cecil L. Smith (University of Georgia, U.S.A.) for editing and revising the English language.

Funding

This study was partially supported by the National Natural Science Foundation of China (No. 31371995) and STS Project of the Chinese Academy of Sciences (No. KFJ-SW-STS143-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Huang.

Ethics declarations

Ethical approval and consent to participate

Not required.

Consent for publication

All authors consent to publication.

Availability of data and supporting materials

Supplemental material is available online.

Conflict of interest

The authors have declared that no competing interests exist. This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Handling Editor: Ayato Takada.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZS., Hou, DH., Cheng, XW. et al. Genomic analysis of a novel isolate Heliothis virescens ascovirus 3i (HvAV-3i) and identification of ascoviral repeat ORFs (aros). Arch Virol 163, 2849–2853 (2018). https://doi.org/10.1007/s00705-018-3899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3899-2

Navigation