Skip to main content
Log in

Comparative genomic analysis of novel bacteriophages infecting Vibrio parahaemolyticus isolated from western and southern coastal areas of Korea

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus, a foodborne pathogen, has become resistant to antibiotics. Therefore, alternative bio-control agents such bacteriophage are urgently needed for its control. Six novel bacteriophages specific to V. parahaemolyticus (vB_VpaP_KF1~2, vB_VpaS_KF3~6) were characterized at the molecular level in this study. Genomic similarity analysis revealed that these six bacteriophages could be divided into two groups with different genomic features, phylogenetic grouping, and morphologies. Two groups of bacteriophages had their own genes with different mechanisms for infection, assembly, and metabolism. Our results could be used as a future reference to study phage genomics or apply phages in future bio-control studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R (2015) Bio-control of Salmonella enteritidis in foods using bacteriophages. Viruses 7:4836–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bastías R, Higuera G, Sierralta W, Espejo RT (2010) A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus. Environ Microbiol 12:990–1000

    Article  PubMed  Google Scholar 

  3. Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sula- Kvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 437–494

    Google Scholar 

  4. CDC (2013) Antibiotic resistance threats in the United States, 2013. Current 114. pp 5–6. Doi: CS239559-Bhttps://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

  5. Centers for Disease Control and Prevention (2013) Vibrio Illness (Vibriosis): Vibrio parahaemolyticus. http://www.cdc.gov/vibrio/vibriop.html. Accessed 14 May 2017

  6. Chang H-J, Hong J, Lee N, Chun HS, Kim HY, Choi S-W, Ok G (2016) Growth inhibitory effect of bacteriophages isolated from western and southern coastal areas of Korea against Vibrio parahaemolyticus in Manila clams. Appl Biol Chem 59:359–365

    Article  CAS  Google Scholar 

  7. Elmahdi S, DaSilva LV, Parveen S (2016) Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiol 57:128–134

    Article  CAS  PubMed  Google Scholar 

  8. Han F, Walker RD, Janes ME, Prinyawiwatkul W, Ge B (2007) Antimicrobial susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus isolates from Louisiana Gulf and retail raw oysters. Appl Environ Microbiol 73:7096–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hardies SC, Thomas JA, Black L, Weintraub ST, Hwang CY, Cho BC (2016) Identification of structural and morphogenesis genes of Pseudoalteromonas phage φRIO-1 and placement within the evolutionary history of Podoviridae. Virology 489:116–127

    Article  CAS  PubMed  Google Scholar 

  10. Isidro A, Henriques AO, Tavares P (2004) The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology 322:253–263

    Article  CAS  PubMed  Google Scholar 

  11. Kemp P, Garcia LR, Molineux IJ (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340:307–317

    Article  CAS  PubMed  Google Scholar 

  12. Khan Shawan MMA, Hasan MA, Hossain MM, Hasan MM, Parvin A, Akter S, Uddin KR, Banik S, Morshed M, Rahman MN, Rahman SMB (2016) Genomics dataset on unclassified published organism (patent US 7547531). Data Br 9:602–605. https://doi.org/10.1016/j.dib.2016.09.046

    Article  Google Scholar 

  13. Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: The creation of a rational scheme for the nomenclature of viruses of bacteria and archaea. Environ Microbiol 11:2775–2777

    Article  PubMed  Google Scholar 

  14. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinf 9:299–306

    Article  CAS  Google Scholar 

  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  16. Lee HS, Choi S, Choi SH (2012) Complete genome sequence of Vibrio vulnificus bacteriophage SSP002. J Virol 86:1–2

    Article  Google Scholar 

  17. Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, Ab Mutalib NS, Lee LH (2016) Insights into bacteriophage application in controlling vibrio species. Front Microbiol 7:1114

    PubMed  PubMed Central  Google Scholar 

  18. Letchumanan V, Yin WF, Lee LH, Chan KG (2015) Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 6:33

    PubMed  PubMed Central  Google Scholar 

  19. Li H, Tang R, Lou Y, Cui Z, Chen W, Hong Q, Zhang Z, Malakar PK, Pan Y, Zhao Y (2017) A comprehensive epidemiological research for clinical Vibrio parahaemolyticus in Shanghai. Front Microbiol 8:1043

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lowe TM, Eddy SR (1996) TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  Google Scholar 

  21. Mahony J, Alqarni M, Stockdale S, Spinelli S, Feyereisen M, Cambillau C, Sinderen DV (2016) Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Sci Rep 6:36667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. National Center for Biotechnology Information (NCBI) Genome database https://www.ncbi.nlm.nih.gov/genome. Accessed 4 Sep 2017

  23. Peng F, Mi Z, Huang Y, Yuan X, Niu W, Wang Y, Hua Y, Fan H, Bai C, Tong Y (2014) Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol 14:181

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stacy MC, Martha I, Jennifer YH, Patricia MG, Debra G, Alicia BC, Matthew C, Melissa TA, David B, Kirk S, Sarah L, Shelley Z, Paul RC, John D, Kristin GH, Susan L, Robert T, Olga LH (2014) Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U.S. sites, 2006-2013. MMWR 63(15):328–332

    Google Scholar 

  25. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. U.S Food and Drug Administration (FDA) Foodborne Illnesses: What You Need to Know. https://www.fda.gov/Food/FoodborneIllnessContaminants/FoodborneIllnessesNeedToKnow/default.htm. Accessed 1 Feb 2017

  27. Villa AA, Kropinski AM, Abbasifar R, Griffiths MW (2012) Complete genome sequence of Vibrio parahaemolyticus bacteriophage vB_VpaM_MAR. J Virol 86:13138–13139

    Article  CAS  Google Scholar 

  28. Wang W, Li M, Lin H, Wang J, Mao X (2016) The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol 161:2645–2652

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Ma Y, Wang Y, Yang H, Shen W, Chen X (2014) Transcription regulation mechanisms of bacteriophages: Recent advances and future prospects. Bioengineered 5:300–304

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zanetti S, Spanu T, Deriu A, Romano L, Sechi LA, Fadda G (2001) In vitro susceptibility of Vibrio spp. isolated from the environment. Int J Antimicrob Agents 17:407–409

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Main Research Program (E0152203-03) of the Korea Food Research Institute, funded by the Ministry of Science and ICT. It was also supported by a grant (CRC-16-01-KRICT) from the National Research Council of Science & Technology (NST) fund by the Korea government (MSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joo Chang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: T. K. Frey.

The nucleotide sequence data reported herein are available in the GenBank database under the accession numbers MF754111, MF754112, MF754113, MF754114, MF754115, MF754116.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Lim, JA., Kwak, SJ. et al. Comparative genomic analysis of novel bacteriophages infecting Vibrio parahaemolyticus isolated from western and southern coastal areas of Korea. Arch Virol 163, 1337–1343 (2018). https://doi.org/10.1007/s00705-018-3756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3756-3

Keywords

Navigation