Skip to main content

Advertisement

Log in

Identification of a novel reassortant A (H9N6) virus in live poultry markets in Poyang Lake region, China

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Live poultry markets (LPM) are one of the most important sources of human infection with avian influenza virus (AIV). During our routine surveillance of AIV, we identified an H9N6 virus (JX-H9N6) in a LPM in Nanchang city, Jiangxi Province, China. Using Bayesian coalescent analysis, it was predicted that JX-H9N6 had originated from a reassortment event between H9N2 and H6N6 AIVs in early 2014, instead of being derived from an H9N6 virus reported previously. Mutations in HA, PB1, PA, M, and NS protein, which could increase mammalian transmission and virulence, were also detected. Currently, both H9N2 and H6N6 AIVs are widely distributed in poultry and contribute to the generation of novel reassortant viruses causing human infection. Our findings highlight the importance of enhanced surveillance in birds for early prediction of human infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

JX:

Jiangxi Province, China

LPM:

Live poultry market

References

  1. Webster RG, Bean WJ, Gorman OT et al (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179. doi:10.1111/j.1541-0420.2008.01180.x

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tong S, Li Y, Rivailler P et al (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109:4269–4274. doi:10.1073/pnas.1116200109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tong S, Zhu X, Li Y et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:1–45. doi:10.1371/journal.ppat.1003657

    Article  Google Scholar 

  4. Domingo E, Mas A, Yuste E et al (2001) Virus population dynamics, fitness variations and the control of viral disease: an update. Prog Drug Res 57:77–115

    CAS  PubMed  Google Scholar 

  5. Swayne DE, Radin MJ, Hoepf TM, Slemons RD (2014) Acute renal failure as the cause of death in chickens following intravenous inoculation with avian influenza virus A/chicken/Alabama/7395/75 (H4N8). Avian Dis 38:151–157

    Article  Google Scholar 

  6. Subbarao K, Klimov A, Katz J et al (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science (New York, NY) 279:393–396. doi:10.1126/science.279.5349.393

    Article  CAS  Google Scholar 

  7. Pan M, Gao R, Lv Q et al (2015) Human infection with a novel highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings. J Infect 72:52–59. doi:10.1016/j.jinf.2015.06.009

    Article  PubMed  Google Scholar 

  8. Wei SH, Yang JR, Wu HS et al (2013) Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med 1:771–778. doi:10.1016/S2213-2600(13)70221-2

    Article  PubMed  Google Scholar 

  9. Ostrowsky B, Huang A, Terry W et al (2012) Low pathogenic avian influenza A (H7N2) virus infection in immunocompromised adult, New York, USA, 2003. Emerg Infect Dis 18:1128–1131. doi:10.3201/eid1807.111913

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nguyen-Van-Tam JS, Nair P, Acheson P et al (2006) Outbreak of low pathogenicity H7N3 avian influenza in UK, including associated case of human conjunctivitis. Euro Surveill 11(18). http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=2952

  11. Fouchier RA, Schneeberger PM, Rozendaal FW et al (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 101:1356–1361. doi:10.1073/pnas.0308352100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao R, Cao B, Hu Y et al (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897. doi:10.1056/NEJMoa1304459

    Article  CAS  PubMed  Google Scholar 

  13. Guo Y, Li J, Cheng X (1999) Discovery of men infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13:105–108

    CAS  PubMed  Google Scholar 

  14. Arzey GG, Kirkland PD, Arzey KE et al (2012) Influenza virus a (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis 18:814–816. doi:10.3201/eid1805.111852

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Yuan H, Gao R et al (2014) Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet (London, England) 383:714–721. doi:10.1016/S0140-6736(14)60111-2

    Article  Google Scholar 

  16. Butt KM, Smith GJD, Chen H et al (2005) Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43:5760–5767. doi:10.1128/JCM.43.11.5760-5767.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu W, Li H, Jiang L (2016) Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China. Infect Dis 48:477–482. doi:10.3109/23744235.2015.1135253

    Article  Google Scholar 

  18. Shen Y, Ke C, Li Q et al (2016) Novel reassortant avian influenza A (H5N6) viruses in humans, Guangdong, China, 2015. Emerg Infect Dis 22:2015–2017

    Article  Google Scholar 

  19. Zhou B, Donnelly ME, Scholes DT et al (2009) Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol 83:10309–10313. doi:10.1128/JVI.01109-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Zou S, Li X et al (2016) Detection of reassortant avian influenza A (H11N9) virus in environmental samples from live poultry markets in China. Infect Dis Poverty 5:4–9. doi:10.1186/s40249-016-0149-2

    Article  Google Scholar 

  21. Zhu W, Li L, Yan Z et al (2015) Dual E627K and D701N mutations in the PB2 protein of A(H7N9) influenza virus increased its virulence in mammalian models. Sci Rep 5:14170. doi:10.1038/srep14170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497. doi:10.1016/j.jvs.2011.05.096

    Google Scholar 

  23. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol 10:1–6. doi:10.1371/journal.pcbi.1003537

    Article  Google Scholar 

  24. Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evolut 22:160–174. doi:10.1007/BF02101694

    Article  CAS  Google Scholar 

  25. Drummond A, Rambaut A (2007) Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer Accessed 30 Oct 2014

  26. Rambaut A (2009) FigTree, a graphical viewer of phylogenetic trees. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh

    Google Scholar 

  27. (OIE) World Organization for Animal Health (2016) Avian influenza (infection with avian influenza viruses). In: Manual of diagnostic tests and vaccines for terrestrial animals, pp 1–23

  28. Campitelli L, Mogavero E, De Marco MA et al (2004) Interspecies transmission of an H7N3 influenza virus from wild birds to intensively reared domestic poultry in Italy. Virology 323:24–36. doi:10.1016/j.virol.2004.02.015

    Article  CAS  PubMed  Google Scholar 

  29. Matrosovich M, Zhou N, Kawaoka Y, Webster R (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gabriel G, Dauber B, Wolff T et al (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102:18590–18595. doi:10.1073/pnas.0507415102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu C, Hu WB, Xu K et al (2012) Amino acids 473v and 598p of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J Gen Virol 93:531–540. doi:10.1099/vir.0.036434-0

    Article  CAS  PubMed  Google Scholar 

  32. Xu G, Zhang X, Gao W et al (2016) Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity. J Virol 90:8105–8114. doi:10.1128/JVI.00883-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan S, Deng G, Song J et al (2009) Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 384:28–32. doi:10.1016/j.virol.2008.11.044

    Article  CAS  PubMed  Google Scholar 

  34. Jiao P, Tian G, Li Y et al (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82:1146–1154. doi:10.1128/JVI.01698-07

    Article  CAS  PubMed  Google Scholar 

  35. Lycett SJ, Ward MJ, Lewis FI et al (2009) Detection of mammalian virulence determinants in highly pathogenic avian influenza H5N1 viruses: multivariate analysis of published data. J Virol 83:9901–9910. doi:10.1128/JVI.00608-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciampor F, Bayley PM, Nermut MV et al (1992) Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans golgi compartment. Virology 188:14–24. doi:10.1016/0042-6822(92)90730-D

    Article  CAS  PubMed  Google Scholar 

  37. Gronesova P, Ficova M, Mizakova A et al (2008) Prevalence of avian influenza viruses, Borrelia garinii, Mycobacterium avium, and Mycobacterium avium subsp. paratuberculosis in waterfowl and terrestrial birds in Slovakia, 2006. Avian Pathol 37:537–543. doi:10.1080/03079450802356953

    Article  CAS  PubMed  Google Scholar 

  38. Perez DR, Lim W, Seiler JP et al (2003) Role of quail in the interspecies transmission of H9 influenza A viruses : molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol 77:3148–3156. doi:10.1128/JVI.77.5.3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nomura N, Sakoda Y, Endo M et al (2012) Characterization of avian influenza viruses isolated from domestic ducks in Vietnam in 2009 and 2010. Archiv Virol 157:247–257. doi:10.1007/s00705-011-1152-3

    Article  CAS  Google Scholar 

  40. Obenauer JC, Denson J, Mehta PK et al (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580. doi:10.1126/science.1121586

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Yang J, Liu B et al (2016) H3N8, and emergence of novel reassortant H3N6 in a local community in Hunan province in China. Sci Rep 6:1–8. doi:10.1038/srep25549

    Article  Google Scholar 

  42. Ma C, Lam TT, Chai Y et al (2015) Emergence and evolution of H10 subtype influenza viruses in poultry in China. J Virol 89:3534–3541. doi:10.1128/JVI.03167-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sediri H, Thiele S, Schwalm F et al (2016) PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor. J Gen Virol 97:39–48. doi:10.1099/jgv.0.000333

    Article  CAS  PubMed  Google Scholar 

  44. Wang D, Yang L, Gao R et al (2013) Genetic tuning of the novel avian influenza A (H7N9) virus during interspecies transmission, China, 2013. Euro Surveill 19:1–17

    Google Scholar 

  45. Yang Z-Y, Wei C-J, Kong W-P et al (2007) Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science (New York, NY) 317:825–828. doi:10.1126/science.1135165

    Article  CAS  Google Scholar 

  46. Shinya K, Hamm S, Hatta M et al (2004) PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266. doi:10.1016/j.virol.2003.11.030

    Article  CAS  PubMed  Google Scholar 

  47. Xu G, Zhang X, Gao W et al (2016) Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity. J Virol 90:8105–8114. doi:10.1128/JVI.00883-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2016YFD0500208 to Wang and 2016YFC1200200 to Shu); National Natural Science Foundation of China (81460302 to Chen); The Major Science and Technology Project of Jiangxi Province (20143ACG70004 to Chen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiying Chen, Yuelong Shu or Dayan Wang.

Ethics declarations

Funding

This study was funded by the National Key Research and Development Program of China (2016YFD0500208 to Wang and 2016YFC1200200 to Shu); National Natural Science Foundation of China (81460302 to Chen); The Major Science and Technology Project of Jiangxi Province (20143ACG70004 to Chen).

Conflict of interest

We declare that we have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2017_3507_MOESM1_ESM.eps

Supplementary material 1 Fig. 1 Evolutionary relationships between the H9N6, H5N6 and H10N6 viruses. JX-H9N6 is indicated by a black triangle, H5N6 strains isolated from humans are indicated by red triangles while other H9N6 strains are indicated by black squares. The phylogenetic tree of the N6 NA gene was generated using the neighbor-joining method with 1000 bootstraps replicates using the MEGA 7.0 software (EPS 2024 kb)

705_2017_3507_MOESM2_ESM.tif

Supplementary material 2 Fig. 2 Yearly distribution of H9N2 strains lacking the potential N-glycosylation site at position 210, 1999–2015 (TIFF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, M., Zeng, X. et al. Identification of a novel reassortant A (H9N6) virus in live poultry markets in Poyang Lake region, China. Arch Virol 162, 3681–3690 (2017). https://doi.org/10.1007/s00705-017-3507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3507-x

Navigation