Skip to main content
Log in

Molecular insights into RNA-binding properties of Escherichia coli–expressed RNA-dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) is responsible for morbidity of the Indian non-mulberry silkworm, A. mylitta. AmCPV belongs to the family Reoviridae and has 11 double-stranded (ds) RNA genome segments (S1-S11). Segment 2 (S2) encodes a 123-kDa polypeptide with RNA-dependent RNA polymerase (RdRp) activity. To examine the RNA-binding properties of the viral polymerase, the full-length RdRp and its three domains (N-terminal, polymerase and C-terminal domains) were expressed in Escherichia coli BL21 (DE3) cells with hexahistidine and trigger factor tag fused consecutively at its amino terminus, and the soluble fusion proteins were purified. The purified full-length polymerase specifically bound to the 3′ untranslated region (3′-UTR) of a viral plus-sense (+) strand RNA with strong affinity regardless of the salt concentrations, but the isolated polymerase domain of the enzyme exhibited poor RNA-binding ability. Further, the RdRp recognition signals were found to be different from the cis-acting signals that promote minus-sense (-) strand RNA synthesis, because different internal regions of the 3′-UTR of the (+) strand RNA did not effectively compete out the binding of RdRp to the intact 3′-UTR of the (+) strand RNA, but all of these RNA molecules could serve as templates for (-) strand RNA synthesis by the polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal S, Gupta D, Panda SK (2000) The 3′ end of Hepatitis E Virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). Virology 282:87–101

    Article  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 131:499–503

    Google Scholar 

  3. Boyce M, Wehrfritz J, Noad R, Roy P (2004) Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity. J Virol 78:3994–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burkhardt C, Sung P, Celma CC, Roy P (2014) Structural constraints in the packaging of bluetongue virus genomic segments. J Gen Virol 95:2240–2250

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen D, Patton JT (2000) De novo synthesis of minus strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation. RNA 6:1455–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng L, Sun J, Zhang K, Mou Z, Huang X, Ji G, Sun F, Zhang J, Zhu P (2011) Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Proc Natl Acad Sci USA 108:1373–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gamarnik AV (2010) In: Hanley KA, Weaver SC (eds) Frontiers in dengue virus research. Caister Academic Press, Norfolk, pp 55–78

  8. Ghorai S, Chakrabarti M, Roy S, Chavali VR, Bagchi A, Ghosh AK (2010) Molecular characterization of genome segment 2 encoding RNA-dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. Virology 404:21–31

    Article  CAS  PubMed  Google Scholar 

  9. Hagiwara K, Naitow H (2003) Assembly into single-shelled virus-like particles by major capsid protein VP1 encoded by genome segment S1 of Bombyx mori cypovirus 1. J Gen Virol 84:2439–2441

    Article  CAS  PubMed  Google Scholar 

  10. Hill CL, Booth TF, Prasad BVV, Grimes JM, Mertens PPC, Sutton GC, Stuart DI (1999) The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6:565–568

    Article  CAS  PubMed  Google Scholar 

  11. Huang CY, Huang Y-L, Meng M, Hsu YH, Tsai C-H (2001) Sequences at the 3′ untranslated region of bamboo mosaic potexvirus RNA interact with the viral RNA-dependent RNA polymerase. J Virol 75:2818–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konarska MM, Sharp P (1987) Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49:763–774

    Article  CAS  PubMed  Google Scholar 

  13. Kundu A, Dutta A, Biswas P, Das AK, Ghosh AK (2015) Functional insights from molecular modeling, docking and dynamics study of a cypoviral RNA-dependent RNA polymerase. J Mol Graph Mod 61:160–174

    Article  CAS  Google Scholar 

  14. Kundu A, Roychowdhury A, Bose M, Das AK, Ghosh AK (2016) Reconstitution of the RNA-dependent RNA polymerase activity of Antheraea mylitta cypovirus in vitro using separately expressed different functional domains of the enzyme. J Gen Virol 97:1–11

    Article  Google Scholar 

  15. Lakowich JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, USA, pp 63–95

    Book  Google Scholar 

  16. Lourenco S, Roy P (2011) In vitro reconstitution of blue tongue virus infectious cores. Proc Natl Acad Sci USA 108:13746–13751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McDonald SM, Patton JT (2011) Assortment and packaging of the segmented rotavirus genome. Trends Microbiol 19:136–144

    Article  CAS  PubMed  Google Scholar 

  18. McDonald SM, Patton JT (2011) Rotavirus VP2 core shell regions critical for viral polymerase activation. J Virol 85:3095–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonald SM, Tao YJ, Patton JT (2009) The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases. Curr Opin Struct Biol 19:775–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mertens PPC, Rao S, Zhou ZH (2005) Cypovirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy 8th report of the ICTV. Elsevier Academic Press, Amsterdam, pp 522–533

    Google Scholar 

  21. Patton JT, Spencer E (2000) Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277:217–225

    Article  CAS  PubMed  Google Scholar 

  22. Qanungo KR, Kundu SC, Ghosh AK (2000) Characterization of cypovirus isolates from tropical and temperate Indian saturniidaee silkworms. Acta Virol 44:349–357

    CAS  PubMed  Google Scholar 

  23. Smith RE, Furuichi Y (1980) Gene mapping of cytoplasmic polyhedrosis virus of silkworm by the full-length mRNA prepared under optimized conditions of transcription in vitro. Virology 103:279–290

    Article  CAS  PubMed  Google Scholar 

  24. Tortorici MA, Broering TJ, Nilbert ML, Patton JT (2003) Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278:32673–32682

    Article  CAS  PubMed  Google Scholar 

  25. Tortorici MA, Shapiro BA, Patton JT (2006) A base-specific recognition signal in the 5′ consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments. RNA 12:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamashita T, Kaneko S, Shirota Y, Qin W, Nomura T, Kobayashi K, Murakami S (1998) RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem 273:15479–15486

    Article  CAS  PubMed  Google Scholar 

  27. Yang CG, Ji H, Liu K, Zhang G, Liu F, Sun P, Zhu P, Cheng L (2012) Cryo-EM structure of a transcribing cypovirus. Proc Natl Acad Sci USA 109:6118–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang J, Cheng J, Zhang S, Xiong W, Xia H, Qiu Y, Wang Z, Wu F, Qin CF, Lei Y, Hu Y, Zhou X (2014) A cypovirus VP5 displays the RNA chaperone-like activity that destabilizes RNA helices and accelerates strand annealing. Nucleic Acid Res 42:2538–2554

    Article  CAS  PubMed  Google Scholar 

  29. Zhang B, Zhang Y, Wang Z, Zheng Y (2000) The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J Biol Chem 33:25299–25307

    Article  Google Scholar 

  30. Zhang H, Zhang J, Yu X, Lu X, Zhang Q, Jakana J, Chen DH, Zhang X, Zhou ZH (1999) Visualization of protein–RNA interactions in cytoplasmic polyhedrosis virus. J Virol 73:1624–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Ding K, Yu X, Chang W, Sun J, Zhou ZH (2015) In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature 527:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou ZH, Zhang H, Jakana J, Lu XY, Zhang JQ (2003) Cytoplasmic polyhedrosis virus structure at 8 Å by electron cryomicroscopy: structural basis of capsid stability and mRNA processing regulation. Structure 11:651–663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant from Department of Science and Technology, Govt. of India (no. SR/SO/BB-0038/2011). AK, MB, MR, SD, PG, and PB thank IIT Kharagpur, CSIR (GOI), DBT (GOI), and ICMR (GOI) for providing research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta Kumar Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. All authors contributed to this work and agreed to its publication. This study represents original work that has not been submitted to any other journal for publication.  No human or animal subject was used in this study and  therefore, no human or animal ethics approval was required for the completion of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Bose, M., Roy, M. et al. Molecular insights into RNA-binding properties of Escherichia coli–expressed RNA-dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. Arch Virol 162, 2727–2736 (2017). https://doi.org/10.1007/s00705-017-3412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3412-3

Navigation