Skip to main content
Log in

First complete genome sequence of a virulent bacteriophage infecting the opportunistic pathogen Serratia rubidaea

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A Serratia rubidaea phage, vB_Sru IME250, was isolated from hospital sewage. The morphology suggested that phage vB_Sru IME250 should be classified as a member of the family Myoviridae. High-throughput sequencing revealed that the phage genome has 154,938 nucleotides and consists of 193 coding DNA sequences, 90 of which have putative functions. The genome of vB_Sru IME250 is a linear, double-stranded DNA with an average GC content of 40.04%. The phage has a relatively high similarity to Klebsiella phage 0507-KN2-1, with a genome coverage of 84%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ewing WH, Davis BR, Fife MA, Lessel EF (1973) Biochemical characterization of Serratia liquefaciens (Grimes and Hennerty) Bascomb et al. (Formerly Enterobacter liquefaciens) and Serratia rubidaea (Stapp) comb. nov. and Designation of Type and Neotype Strains. Int J Syst Evol Microbiol 23(3):217–225. doi:10.1099/00207713-23-3-217

    Google Scholar 

  2. Stock I, Burak S, Sherwood KJ, Grüger T, Wiedemann B (2003) Natural antimicrobial susceptibilities of strains of ‘unusual’ Serratia species: S. ficaria, S. fonticola, S. odorifera, S. plymuthica and S. rubidaea. J Antimicrob Chemother 51(4):865–885. doi:10.1093/jac/dkg156

    Article  CAS  PubMed  Google Scholar 

  3. Kumar S, Bandyopadhyay M, Chatterjee M, Mukhopadhyay P, Pal S, Poddar S, Banerjee P (2013) Red discoloration of urine caused by Serratia rubidae: a rare case. Avicenna J Med 3(1):20–22

    Article  PubMed  PubMed Central  Google Scholar 

  4. Viertel TM, Ritter K, Horz H-P (2014) Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. doi:10.1093/jac/dku173

    PubMed  Google Scholar 

  5. Ishimoto LK, Ishimoto KS, Cascino A, Cipollaro M, Eiserling FA (1988) The structure of three bacteriophage T4 genes required for tail-tube assembly. Virology 164(1):81–90

    Article  CAS  PubMed  Google Scholar 

  6. Kanamaru S, Gassner NC, Ye N, Takeda S, Arisaka F (1999) The C-terminal fragment of the precursor tail lysozyme of bacteriophage T4 stays as a structural component of the baseplate after cleavage. J Bacteriol 181(9):2739–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roujeinikova A, Baldock C, Simon WJ, Gilroy J, Baker PJ, Stuitje AR, Rice DW, Slabas AR, Rafferty JB (2002) X-Ray crystallographic studies on butyryl-ACP reveal flexibility of the structure around a putative acyl chain binding site. Structure 10(6):825–835

    Article  CAS  PubMed  Google Scholar 

  8. Paddison P, Abedon ST, Dressman HK, Gailbreath K, Tracy J, Mosser E, Neitzel J, Guttman B, Kutter E (1998) The roles of the bacteriophage T4 r genes in lysis inhibition and fine-structure genetics: a new perspective. Genetics 148(4):1539–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Moussa SH, Lawler JL, Young R (2014) Genetic dissection of T4 lysis. J Bacteriol 196(12):2201–2209. doi:10.1128/jb.01548-14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ohyama H, Sakai T, Agari Y, Fukui K, Nakagawa N, Shinkai A, Masui R, Kuramitsu S (2014) The role of ribonucleases in regulating global mRNA levels in the model organism Thermus thermophilus HB8. BMC Genom 15(1):1–14

    Article  Google Scholar 

  11. Keyamura K, Sakaguchi C, Kubota Y, Niki H, Hishida T (2013) RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks. J Biol Chem 288(41):29229–29237. doi:10.1074/jbc.M113.485474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lusetti SL, Cox MM (2002) The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71(1):71–100

    Article  CAS  PubMed  Google Scholar 

  13. Odsbu I, Skarstad K (2014) DNA compaction in the early part of the SOS response is dependent on RecN and RecA. Microbiology 160(5):872–882. doi:10.1099/mic.0.075051-0

    Article  CAS  PubMed  Google Scholar 

  14. Grove JI, Wood SR, Briggs GS, Oldham NJ, Lloyd RG (2009) A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli. DNA Repair 8(12):1434–1443

    Article  CAS  PubMed  Google Scholar 

  15. Brooks K, Clark AJ (1967) Behavior of λ bacteriophage in a recombination deficient strain of Escherichia coli. J Virol 1(2):283–293

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gimble FS, Sauer RT (1986) λ repressor inactivation: properties of purified ind-proteins in the autodigestion and RecA-mediated cleavage reactions. J Mol Biol 192(1):39–47

    Article  CAS  PubMed  Google Scholar 

  17. Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52(3):243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Summer EJ, Berry J, Tran TAT, Niu L, Struck DK, Young R (2007) Rz/Rz1 lysis gene equivalents in phages of gram-negative hosts. J Mol Biol 373(5):1098–1112. doi:10.1016/j.jmb.2007.08.045

    Article  CAS  PubMed  Google Scholar 

  19. Berry J, Rajaure M, Pang T, Young R (2012) The Spanin complex is essential for Lambda Lysis. J Bacteriol 194(20):5667–5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koonin EV, Rudd KE (1994) A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends Biochem Sci 19(3):106

    Article  CAS  PubMed  Google Scholar 

  21. Katz ME, Howarth PM, Yong WK, Riffkin GG, Depiazzi LJ, Rood JI (1991) Identification of three gene regions associated with virulence in Dichelobacter nodosus, the causative agent of ovine footrot. Microbiology 137(9):2117–2124. doi:10.1099/00221287-137-9-2117

    CAS  Google Scholar 

  22. Billington SJ, Huggins AS, Johanesen PA, Crellin PK, Cheung JK, Katz ME, Wright CL, Haring V, Rood JI (1999) Complete nucleotide sequence of the 27-Kilobase virulence related locus (vrl) of Dichelobacter nodosus: evidence for extrachromosomal origin. Infect Immun 67(3):1277–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Morrical SW (2010) Assembly and dynamics of the bacteriophage T4 homologous recombination machinery. Virol J 7(1):1–15. doi:10.1186/1743-422x-7-357

    Article  CAS  Google Scholar 

  24. Mahlen SD (2011) Serratia infections: from military experiments to current practice. Clin Microbiol Rev 24(4):755–791. doi:10.1128/cmr.00017-11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Saito H, Elting L, Bodey GP, Berkey P (1989) Serratia bacteremia: review of 118 cases. Rev Infect Dis 11(6):912–920. doi:10.1093/clinids/11.6.912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Guangqian Pei, Yunfei Wang, Xiaodong Liu, Peng Shu, Shi Cheng and Wenli Liu for their help during this work. This research was supported by a Grant from the National Hi-Tech Research and Development (863) Program of China (Nos. 2012AA022003 and 2014AA021402), the China Mega-Project on Infectious Disease Prevention (Nos. 2013ZX10004605, 2011ZX10004001, 2013ZX10004607-004 and 2013ZX10004217-002-003), and the State Key Laboratory of Pathogen and BioSecurity Program (No. SKLPBS1113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhui Wu, Lin Wei or Yigang Tong.

Ethics declarations

Conflict of interest

All the authors have received research Grants from the National Hi-Tech Research and Development (863) Program of China (Nos. 2012AA022003 and 2014AA021402), the China Mega-Project on Infectious Disease Prevention (Nos. 2013ZX10004605, 2011ZX10004001, 2013ZX10004607-004 and 2013ZX10004217-002-003), and the State Key Laboratory of Pathogen and BioSecurity Program (No. SKLPBS1113). They declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the National Hi-Tech Research and Development (863) Program of China (Nos. 2012AA022003 and 2014AA021402), the China Mega-Project on Infectious Disease Prevention (Nos. 2013ZX10004605, 2011ZX10004001, 2013ZX10004607-004 and 2013ZX10004217-002-003), and the State Key Laboratory of Pathogen and BioSecurity Program (No. SKLPBS1113).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, S., Ma, T., Zhang, X. et al. First complete genome sequence of a virulent bacteriophage infecting the opportunistic pathogen Serratia rubidaea . Arch Virol 162, 2021–2028 (2017). https://doi.org/10.1007/s00705-017-3300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3300-x

Keywords

Navigation