Skip to main content

Advertisement

Log in

Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92 % sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Murakami R, Nakashima N, Hinomoto N, Kawano S, Toyosato T (2011) The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus). Arch Virol 156:921–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alfaro-Fernández A, ElShafie EE, Ali MA, El Bashir OOA, Córdoba-Sellés MC, Font San Ambrosio MI (2014) First report of Pepper vein yellows virus infecting hot pepper in Sudan. Plant Dis 98(10):1446–1446

    Article  Google Scholar 

  3. Knierim D, Tsai WS, Kenyon L (2013) Analysis of sequences from field samples reveals the presence of the recently described pepper vein yellows virus (genus Polerovirus) in six additional countries. Arch Virol 158:1337–1341

    Article  CAS  PubMed  Google Scholar 

  4. Tiendrébéogo F, Lefeuvre P, Hoareau M, Traoré VS, Barro N, Péréfarres F, Reynaud B, Traoré AS, Konaté G, Lett JM, Traoré O (2011) Molecular and biological characterization of Pepper yellow vein Mali virus (PepYVMV) isolates associated with pepper yellow vein disease in Burkina Faso. Arch Virol 156:483–487

    Article  PubMed  Google Scholar 

  5. Yonaha T, Toyosato T, Kawano S, Osaki T (1995) Pepper vein yellows virus, a novel luteovirus from bell pepper plants in Japan. Ann Phytopathol Soc Jpn 61:178–184

    Article  Google Scholar 

  6. Knierim D, Deng TC, Tsai WS, Green SK, Kenyon L (2010) Molecular identification of three distinct Polerovirus species and a recombinant Cucurbit aphid-borne yellows virus strain infecting cucurbit crops in Taiwan. Plant Pathol 59:991–1002

    Article  CAS  Google Scholar 

  7. Shang QV, Xiang HY, Han CG, Li DW, Yu JL (2009) Distribution and molecular diversity of three cucurbit-infecting poleroviruses in China. Virus Res 145:341–346

    Article  CAS  PubMed  Google Scholar 

  8. Xiang HY, Shang QX, Han CG, Li DW, Yu JL (2008) Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China. Arch Virol 153:1155–1160

    Article  CAS  PubMed  Google Scholar 

  9. Villanueva F, Castillo P, Font MI, Alfaro-Fernández A, Moriones E, Navas-Castillo J (2013) First report of Pepper vein yellows virus infecting sweet pepper in Spain. Plant Dis 97:1261

    Article  Google Scholar 

  10. Gibbs AJ, Ohshima K (2010) Potyviruses and the digital revolution. Ann Rev Phytopathol 48:205–223

    Article  CAS  Google Scholar 

  11. Mohapatra SS, Poole RJ, Dhindsa RS (1987) Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant Physiol 84:1172–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu Q, Wang Y, Cao M, Pantaleo V, Burgyan J, Li WX, Ding SW (2012) Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc Natl Acad Sci USA 109:3938–3943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci USA 107:1606–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) CLUSTAL W and CLUSTALX version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  18. Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Fulllength human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160

    PubMed Central  CAS  PubMed  Google Scholar 

  20. He Z, Li W, Yasaka R, Huang Y, Zhang Z, Ohshima K, Li S (2014) Molecular variability of sugarcane streak mosaic virus in China based on an analysis of the P1 and CP protein coding regions. Arch Virol 159:1149–1154

    Article  CAS  PubMed  Google Scholar 

  21. Guindon S, Gascuel O (2003) A simple fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  22. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum-likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  25. Dayhoff MO, Barker WC, Hunt LT (1983) Establishing homologies in protein sequences. Methods Enzymol 91:524–545

    Article  CAS  PubMed  Google Scholar 

  26. Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    CAS  PubMed  Google Scholar 

  27. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  28. Dombrovsky A, Glanz E, Pearlsman M, Lachman O, Antignus Y (2010) Characterization of Pepper yellow leaf curl virus, a tentative new Polerovirus species causing a yellowing disease of pepper. Phytoparasitica 38:477–486

    Article  CAS  Google Scholar 

  29. Yin X, Zheng FQ, Tang W, Zhu QQ, Li XD, Zhang GM, Liu HT, Liu BS (2013) Genetic structure of Rice black-streaked dwarf virus populations in China. Arch Virol 158:2505–2515

    Article  CAS  PubMed  Google Scholar 

  30. Wei TY, Yang JG, Liao FR, Liao FL, Gao FL, Lu LM, Zhang XT, Li F, Wu ZJ, Lin QY, Xie LH, Lin HX (2009) Genetic diversity and population structure of Rice stripe virus in China. J Gen Virol 90:1025–1034

    Article  CAS  PubMed  Google Scholar 

  31. Miller WA, Dinesh-Kumar SP, Paul CP (1995) Luteovirus gene expression. Crit Rev Plant Sci 14:179–211

    Article  CAS  Google Scholar 

  32. Moonan F, Molina J, Mirkov TE (2000) Sugarcane yellowleaf virus:an emerging virus that has evolved by recombination between luteoviral and poleroviral ancestors. Virology 269:156–171

    Article  CAS  PubMed  Google Scholar 

  33. Knierim D, Deng TC, Tsai WS, Green SK, Kenyon L (2010) Molecular identification of three distinct Polerovirus species and a recombinant Cucurbit aphid-borne yellows virus strain infecting cucurbit crops in Taiwan. Plant Pathol 59:991–1002

    Article  CAS  Google Scholar 

  34. Silva TF, Corrêa RL, Castilho Y, Silvie P, Belot JL, Vaslin MF (2008) Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease. Virol J 5:123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. García-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Ann Rev Phytopathol 39:157–186

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Special Fund for Agro-Scientific Research in the Public Interest (Project no. 201303028), the National Natural Science Foundation of China (31101413), the Shen-Nong Visiting Scholar Funding Program of Hunan Agricultural University, and the Science and Technology Funding for Key Projects of Hunan Tobacco Company (13-14ZDAa04 and 14-16ZDAa02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangyin Dai or Qianjun Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, X., Li, X. et al. Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions. Arch Virol 161, 677–683 (2016). https://doi.org/10.1007/s00705-015-2691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2691-9

Keywords

Navigation