Skip to main content

Advertisement

Log in

Association of lipid profile alterations with severe forms of dengue in humans

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Previous studies have shown a relationship between circulating lipids and dengue virus infection; however, the association of altered lipid profiles with severe dengue remains little studied. The aim of this study was to determine the association between circulating lipid content and severe dengue and/or platelet counts. Ninety-eight patients (2–66 years old) classified as having dengue without warning signs (DNWS), dengue with warning signs (DWWS), or severe dengue (SD) and 62 healthy individuals were studied. Blood samples were tested for NS1, anti-dengue IgM, platelet content, total cholesterol (TC), triglycerides (T), high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL). Lipid alterations were observed mainly in patients with SD. Increased T and VLDL was observed in SD, and increased HDL was observed in DWWS and SD. Decreased TC was found in all forms of dengue, and the lowest LDL values were found in SD. Platelet counts were significantly decreased in DWWS and SD when compare to DNWS. A positive correlation (p = 0.019) between LDL values and platelet counts and a negative correlation (p = 0.0162) between VLDL values and platelet counts were found. Lipid profile alterations were associated with severe dengue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Normile D (2013) Surprising new dengue virus throws a spanner in disease control efforts. Science 342:415

    Article  CAS  PubMed  Google Scholar 

  2. (2009) Dengue guidelines for diagnosis, treatment, prevention and control, 3rd edn. World Health Organization, Geneva. http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf

  3. Voisset C, Callens N, Blanchard E et al (2005) High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. J Biol Chem 280:7793–7799

    Article  CAS  PubMed  Google Scholar 

  4. Andreo U, Maillard P, Kalinina O et al (2007) Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection. Cell Microbiol 9:2445–2456

    Article  CAS  PubMed  Google Scholar 

  5. Agnello V, Abel G, Elfahal M et al (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA 96:12766–12771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Andre P, Komurian-Pradel F, Deforges S et al (2002) Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76:6919–6928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Voisset C, Op de Beeck A, Horellou P et al (2006) High density lipoproteins reduce the neutralizing effect of hepatitis C virus (HCV)-infected patient antibodies by promoting HCV entry. J Gen Virol 87:2577–2581

    Article  CAS  PubMed  Google Scholar 

  8. Van Gorp ECM, Suharti C, Mairuhu ATA et al (2002) Changes in the plasma lipid profile as a potential predictor of clinical outcome in dengue hemorrhagic fever. Clin Infect Dis 34:1150–1153

    Article  PubMed  Google Scholar 

  9. Suvarna JC, Rane PP (2009) Serum lipid profile: a predictor of clinical outcome in dengue infection. Trop Med Int Health 14:576–585. doi:10.1111/j.1365-3156.2009.02261.x

    Article  CAS  PubMed  Google Scholar 

  10. Villar-Centeno LA, Díaz-Quijano FA, Martínez-Vega RA et al (2008) Biochemical alterations as markers of dengue hemorrhagic fever. Am J Trop Med Hyg 78:370–374

    CAS  PubMed  Google Scholar 

  11. Heaton NS, Randall G (2011) Microbes and metabolism: multifaceted roles for lipids in viral infection. Trends Microbiol 19:368–375. doi:10.1016/j.tim.2011.03.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tsai JJ, Chokephaibulkit K, Chen PC et al (2013) Role of cognitive parameters in dengue hemorrhagic fever and dengue shock syndrome. J Biomed Sci 20:88. http://www.jbiomedsci.com/content/20/1/88

  13. Huy NT, Van Giang T, Thuy DHD et al (2013) Factors associated with dengue shock syndrome: a systematic review and meta- analysis. PLoS Negl Trop Dis 7:e2412. doi:10.1371/journal.pntd.0002412

    Article  PubMed Central  PubMed  Google Scholar 

  14. Friedewald W, Levy R, Fredrickson D (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  15. The National Cholesterol Education Program. NCEP 2001. https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf

  16. Stephenson JR (2005) Understanding dengue pathogenesis: implications for vaccine design. Bull World Health Organ 83:308–314

    PubMed Central  PubMed  Google Scholar 

  17. Mongkolsapaya J, Dejnirattisai W, Xu XN et al (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9:921–927

    Article  CAS  PubMed  Google Scholar 

  18. Dejnirattisai W, Jumnainsong A, Onsirisakul N et al (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328:745–748

    Article  CAS  PubMed  Google Scholar 

  19. Stephens HA (2010) HLA and other gene associations with dengue disease severity. Curr Top Microbiol Immunol 338:99–114

    CAS  PubMed  Google Scholar 

  20. Lye DC, Lee VJ, Sun Y et al (2010) The benign nature of acute dengue infection in hospitalized older adults in Singapore. Int J Infect Dis 14:e410–e413

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Kakinami C, Li Q et al (2013) Human apolipoprotein A-I is associated with dengue virus and enhances virus infection through SR-BI. PLoS ONE 8:e70390. doi:10.1371/journal.pone.0070390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Guevara J, Prashad N, Ermolinksy B et al (2010) Apo B100 similarities to viral proteins suggest basis for LDL-DNA binding and transfection capacity. J Lipid Res 51:1704–1718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Soto-Acosta R, Mosso C, Cervantes-Salazar M et al (2013) The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity. Virology 442:132–147

    Article  CAS  PubMed  Google Scholar 

  24. Lee CJ, Lin HR, Liao CL (2008) Cholesterol effectively blocks entry of flavivirus. J Virol 82:6470–6480. doi:10.1128/JVI.00117-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Carro AC, Damonte EB (2013) Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res 174:78–87

    Article  CAS  PubMed  Google Scholar 

  26. Garcıa-Cordero J, Juarez L, Gonzalez- Merchand JA et al (2014) Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS ONE 9:e90704. doi:10.1371/journal.pone.0090704

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rothwell C, LeBreton A, Ng CY et al (2009) Cholesterol biosynthesis modulation regulates dengue viral replication. Virology 389:8–19

    Article  CAS  PubMed  Google Scholar 

  28. Faustino AF, Carvalho FA, Ivo C et al (2014) Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomedicine 10:247–255. doi:10.1016/j.nano.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  29. Gutschea I, Coulibalya F, Vossb JE et al (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. PNAS 108:8003–8008. doi:10.1073/pnas.1017338108

    Article  Google Scholar 

  30. Nowack R, Wiedemann G (2010) Pancytopenia with severe thrombocytopenia in a patient treated with twice-weekly LDL-apheresis by polyacrylate adsorption from whole blood. J Clin Apheresis 25:77–80

    PubMed  Google Scholar 

  31. Shahbazian H, Mohtashami AZ, Ghorbani A et al (2011) Oral nicotinamide reduces serum phosphorus, increases HDL, and induces thrombocytopenia in hemodialysis patients: a double-blind randomized clinical trial. Nefrologia 31:58–65. doi:10.3265/Nefrologia.pre2010

    PubMed  Google Scholar 

  32. Dole VD, Matuskova J, Vasile E et al (2008) Thrombocytopenia and platelet abnormalities in high-density lipoprotein receptor–deficient mice. Arterioscler Thromb Vasc Biol 28:1111–1116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lin Z-W, Ho H-C, Yang C-H et al (2009) Rosuvastatin-induced thrombocytopenic purpura. Dermatol Sin 27:235–240

    Google Scholar 

  34. Leaf DA (2008) Hypertriglyceridemia: a guide to assessment and treatment. Hosp Phys 32:17–23

    Google Scholar 

  35. Faivre L, Saugier-Veber P, Pais de Barros JP et al (2005) Variable expressivity of the clinical and biochemical phenotype associated with the apolipoprotein E p.Leu149del mutation. Eur J Hum Genet 13:1186–1191

    Article  CAS  PubMed  Google Scholar 

  36. Valero N, Mosquera J, Levy A et al (2014) Differential induction of cytokines by human neonatal, adult, and elderly monocyte/macrophages infected with dengue virus. Viral Immunol 27:151–159. doi:10.1089/vim.2013.0123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ly H, Francone OL, Fielding CJ et al (1995) Endotoxin and TNF lead to reduced plasma LCAT activity and decreased hepatic LCAT mRNA levels in Syrian hamsters. J Lipid Res 36:1254–1263

    CAS  PubMed  Google Scholar 

  38. Ettinger WH, Varma VK, Sorci-Thomas M et al (1994) Cytokines decrease apolipoprotein accumulation in medium from HepG2 cells. Arterioscler Thromb 14:8–13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Instituto de Investigaciones Clínicas “Dr. Américo Negrette”. Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela and Consejo de Desarrollo Científico, Humanístico y Tecnológico de la Universidad del Zulia (CONDES/LUZ): VAC-CONDES-CC-0379-14.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nereida Valero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, A., Carrero, R., Parra, B. et al. Association of lipid profile alterations with severe forms of dengue in humans. Arch Virol 160, 1687–1692 (2015). https://doi.org/10.1007/s00705-015-2433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2433-z

Keywords

Navigation