Skip to main content

Advertisement

Log in

The nematode Caenorhabditis elegans as a model to study viruses

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Caenorhabditis elegans is a worm that has been extensively studied, and it is today an accepted model in many different biological fields. C. elegans is cheap to maintain, it is transparent, allowing easy localization studies, and it develops from egg to adult in around 4 days. Many mutants, available to the scientific community, have been developed. This has facilitated the study of the role of particular genes in many cellular pathways, which are highly conserved when compared with higher eukaryotes. This review describes the advantages of C. elegans as a laboratory model and the known mechanisms utilized by this worm to fight pathogens. In particular, we describe the strong C. elegans RNAi machinery, which plays an important role in the antiviral response. This has been shown in vitro (C. elegans cell cultures) as well as in vivo (RNAi-deficient strains) utilizing recently described viruses that have the worm as a host. Infections with mammalian viruses have also been achieved using chemical treatment. The role of viral genes involved in pathogenesis has been addressed by evaluating the phenotypes of transgenic strains of C. elegans expressing those genes. Very simple approaches such as feeding the worm with bacteria transformed with viral genes have also been utilized. The advantages and limitations of different approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877

    Article  PubMed  CAS  Google Scholar 

  2. Corsi AK (2006) A biochemist’s guide to Caenorhabditis elegans. Anal Biochem 359:1–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D et al (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237

    Article  PubMed  PubMed Central  Google Scholar 

  4. Herman MA (2006) Hermaphrodite cell-fate specification. In: Meyer BJ (ed) WormBook. The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.39.1. http://www.wormbook.org

  5. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  6. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) Introduction to C. elegans. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II, 2nd edn. Cold Sprinh Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–23

  7. Kurz CL, Ewbank JJ (2003) Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4:380–390

    Article  PubMed  CAS  Google Scholar 

  8. Tan MW, Ausubel FM (2000) Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3:29–34

    Article  PubMed  CAS  Google Scholar 

  9. Conradt B, Xue D (2005) Programmed cell death. In: Seydoux G, Priess JR (eds) WormBook. The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.32.1. http://www.wormbook.org

  10. Zhuang JJ, Hunter CP (2012) RNA interference in Caenorhabditis elegans: uptake, mechanism, and regulation. Parasitology 139:560–573

    Article  PubMed  CAS  Google Scholar 

  11. Grishok A, Tabara H, Mello CC (2000) Genetic requirements for inheritance of RNAi in C. elegans. Science 287:2494–2497

    Article  PubMed  CAS  Google Scholar 

  12. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S et al (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  PubMed  CAS  Google Scholar 

  13. Evans DG, Birch JM, Ramsden RT, Sharif S, Baser ME (2006) Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet 43:289–294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Marsh EK, May RC (2012) Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 78:2075–2081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10:47–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ewbank JJ, Zugasti O (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis Model Mech 4:300–304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Pujol N, Link EM, Liu LX, Kurz CL, Alloing G et al (2001) A reverse genetic analysis of components of the toll signaling pathway in Caenorhabditis elegans. Curr Biol 11:809–821

    Article  PubMed  CAS  Google Scholar 

  18. Pradel E, Zhang Y, Pujol N, Matsuyama T, Bargmann CI et al (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 104:2295–2300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Tenor JL, Aballay A (2008) A conserved toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9:103–109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Gravato-Nobre MJ, Stroud D, O’Rourke D, Darby C, Hodgkin J (2011) Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics 187:141–155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Ewbank JJ (2006) Signaling in the immune response. In: Greenwald I (ed) WormBook. The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.83.1. http://www.wormbook.org

  22. Partridge FA, Gravato-Nobre MJ, Hodgkin J (2010) Signal transduction pathways that function in both development and innate immunity. Dev Dyn 239:1330–1336

    PubMed  CAS  Google Scholar 

  23. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    Article  PubMed  CAS  Google Scholar 

  25. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Lu R, Yigit E, Li WX, Ding SW (2009) An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog 5:e1000286

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sarkies P, Miska EA (2013) RNAi pathways in the recognition of foreign RNA: antiviral responses and host-parasite interactions in nematodes. Biochem Soc Trans 41:876–880

    Article  PubMed  CAS  Google Scholar 

  28. Tomari Y, Zamore PD (2005) MicroRNA biogenesis: drosha can’t cut it without a partner. Curr Biol 15:R61–R64

    Article  PubMed  CAS  Google Scholar 

  29. Ashe A, Belicard T, Le Pen J, Sarkies P, Frezal L et al (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2:e00994

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N et al (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 10:169–178

    Article  PubMed  CAS  Google Scholar 

  31. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Parrish S, Fire A (2001) Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7:1397–1402

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A et al (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–132

    Article  PubMed  CAS  Google Scholar 

  34. Felix MA, Ashe A, Piffaretti J, Wu G, Nuez I et al (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9:e1000586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7:590–597

    Article  PubMed  CAS  Google Scholar 

  36. Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev 227:176–188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Schott DH, Cureton DK, Whelan SP, Hunter CP (2005) An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci USA 102:18420–18424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G et al (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436:1040–1043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Ball LA, Johnson KL (1999) Reverse genetics of nodaviruses. Adv Virus Res 53:229–244

    Article  PubMed  CAS  Google Scholar 

  40. Li WX, Li H, Lu R, Li F, Dus M et al (2004) Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA 101:1350–1355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Guo X, Lu R (2013) Characterization of virus-encoded RNA interference suppressors in Caenorhabditis elegans. J Virol 87:5414–5423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356:494–499

    Article  PubMed  CAS  Google Scholar 

  43. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

  44. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    Article  PubMed  CAS  Google Scholar 

  45. Conradt B, Horvitz HR (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93:519–529

    Article  PubMed  CAS  Google Scholar 

  46. Liu WH, Lin YL, Wang JP, Liou W, Hou RF et al (2006) Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans. Proc Natl Acad Sci USA 103:4174–4179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Franz CJ, Zhao G, Felix MA, Wang D (2012) Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode-infecting virus. J Virol 86:11940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Sarkies P, Ashe A, Le Pen J, McKie MA, Miska EA (2013) Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res 23:1258–1270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Sugimoto A, Friesen PD, Rothman JH (1994) Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans. EMBO J 13:2023–2028

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Lee LW, Chang TY, Lo HW, Lo SJ (2011) Hepatitis D antigens cause growth retardation and brood-size reduction in C. elegans. Front Biosci (Elite Ed) 3:380–390

    Article  Google Scholar 

  51. Geng X, Harry BL, Zhou Q, Skeen-Gaar RR, Ge X et al (2012) Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca2+ increase and cell death in Caenorhabditis elegans. Proc Natl Acad Sci USA 109:18465–18470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Nazir A, Sammi SR, Singh P, Tripathi RK (2010) Trans-cellular introduction of HIV-1 protein Nef induces pathogenic response in Caenorhabditis elegans. PLoS One 5:e15312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Choffnes ER, Olsen L, Wizemann TM (2013) Institute of Medicine (U.S.) Forum on microbial threats the science and applications of microbial genomics: workshop summary. xxiv, p 403

  54. Franz CJ, Renshaw H, Frezal L, Jiang Y, Felix MA et al (2014) Orsay, Santeuil and Le Blanc viruses primarily infect intestinal cells in Caenorhabditis nematodes. Virology 448:255–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bratanich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diogo, J., Bratanich, A. The nematode Caenorhabditis elegans as a model to study viruses. Arch Virol 159, 2843–2851 (2014). https://doi.org/10.1007/s00705-014-2168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2168-2

Keywords

Navigation