Skip to main content

Advertisement

Log in

Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Vaccinia virus is widely used as a vector in the development of recombinant vaccines. Vaccinia virus strain Guang 9 (VG9), which was derived from vaccinia virus strain Tian Tan (VTT) by successive plaque-cloning purification, was more attenuated than VTT. In this study, the host cell range and the growth and replication of VG9 were compared with those of VTT. The results showed that both VG9 and VTT could infect permissive cells (Vero, TK-143 and CEF) and semipermissive cells PK (15) and induced a visible cytopathic effect (CPE). Both strains could infect nonpermissive CHO-K1 cells but neither was able to reproduce. The replicative ability of VG9 was a little lower than that of VTT. Additionally, recombinant vaccinia viruses containing a firefly luciferase gene (VG9-L and VTT-L) were constructed, and their expression in vitro and replication and spread in vivo were compared. The expression ability of VG9-L was lower than that of VTT-L. Whole-animal imaging data indicated that VG9-L could reproduce quickly and express the exogenous protein at the site of inoculation, regardless of whether the intramuscular, intracutaneous, subcutaneous or celiac inoculation route was used. VG9-L was better in its ability to express a foreign protein than VTT-L, but the time during which expression occurred was shorter. There was no dissemination of virus in mice inoculated with either strain. In summary, this study demonstrates the possibility of using VG9 for the production of smallpox vaccines or the construction of recombinant vaccinia virus vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

VG9:

Vaccinia virus strain Guang 9

VTT:

Vaccinia virus strain Tian Tan

CPE:

Cytopathic effect

CEF:

Primary chicken embryo fibroblasts

FL:

Firefly luciferase

References

  1. Henderson DA (2011) The eradication of smallpox—an overview of the past, present, and future. Vaccine 29(Suppl 4):D7–D9

    Article  PubMed  Google Scholar 

  2. Hui X, Yutu J (1981) The eradication of smallpox in Shanghai, China, October 1950–July 1951. Bull World Health Org 59:913–917

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Smith KA (2013) Smallpox: can we still learn from the journey to eradication? Indian J Med Res 137:895–899

    PubMed  PubMed Central  Google Scholar 

  4. Chen H, Chuai X, Deng Y, Wen B, Wang W, Xiong S, Ruan L, Tan W (2012) Optimisation of prime-boost immunization in mice using novel protein-based and recombinant vaccinia (Tiantan)-based HBV vaccine. PloS one 7:e43730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Deng Y, Zhang K, Tan W, Wang Y, Chen H, Wu X, Ruan L (2009) A recombinant DNA and vaccinia virus prime-boost regimen induces potent long-term T-cell responses to HCV in BALB/c mice. Vaccine 27:2085–2088

    Article  PubMed  CAS  Google Scholar 

  6. Guo F, Lu R, Sun Z, Ma H, Li J, Zhang Y, Ma D, Ruan L (2002) Expression of IL-6 in recombinant non-replicating vaccinia virus and studying its effects on immunogenicity. Chin J Exp Clin Virol 16:136–141 (in Chinese)

    CAS  Google Scholar 

  7. Huang B, Wang W, Li R, Wang X, Jiang T, Qi X, Gao Y, Tan W, Ruan L (2012) Influenza A virus nucleoprotein derived from Escherichia coli or recombinant vaccinia (Tiantan) virus elicits robust cross-protection in mice. Virol J 9:322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Liu C, Du S, Li C, Wang Y, Wang M, Li Y, Yin R, Li X, Ren D, Qin Y, Ren J, Jin N (2013) Immunogenicity analysis following human immunodeficiency virus recombinant DNA and recombinant vaccinia virus Tian Tan prime-boost immunization. Sci China Life Sci 56:531–540

    Article  PubMed  CAS  Google Scholar 

  9. Wen B, Deng Y, Chen H, Guan J, Chuai X, Ruan L, Kong W, Tan W (2013) The novel replication-defective vaccinia virus (Tiantan strain)-based hepatitis C virus vaccine induces robust immunity in macaques. Mol Ther: J Am Soc Gene Ther 21:1787–1795

    Article  CAS  Google Scholar 

  10. Yan K, Tan W, Wang H, Wang Y, Zhang X, Li Y, Ruan L (2009) SARS-CoV spike proteins expressed by the vaccinia virus Tiantan strain: secreted sq protein induces robust neutralization antibody in mice. Viral Immunol 22:57–66

    Article  PubMed  CAS  Google Scholar 

  11. Zhao L, Liu B, Ren J, Feng J, Pang Z, Gao J, Zhang H, Tan W, Tian H, Ruan L (2011) Immunogenicity in mice and rhesus monkeys vaccinated with recombinant vaccinia virus expressing bivalent E7E6 fusion proteins from human papillomavirus types 16 and 18. Virol J 8:302

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fang Q, Yang L, Zhu W, Liu L, Wang H, Yu W, Xiao G, Tien P, Zhang L, Chen Z (2005) Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus Tian Tan strain. Virology 335:242–251

    Article  PubMed  CAS  Google Scholar 

  13. Marennikova SS, Shafikova RA (1969) Comparative studies on the properties of variola virus strains. I. Characteristics of chorioallantoic membrane lesions and pathogenicity for chick embryos after different methods of inoculation. Acta Virol 13:538–543

    PubMed  CAS  Google Scholar 

  14. Ruan L (2013) Research and application of vaccinia virus Tiantan strain vector. J Microbes Infect 8:2–8 (in Chinese)

    CAS  Google Scholar 

  15. Huang X, Lu B, Yu W, Fang Q, Liu L, Zhuang K, Shen T, Wang H, Tian P, Zhang L, Chen Z (2009) A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PloS One 4:e4180

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Wang S, Zhang Q, Tian M, Hou J, Wang R, Liu C, Ji X, Liu Y, Shao Y (2013) Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan. PloS One 8:e68115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Yu W, Fang Q, Zhu W, Wang H, Tien P, Zhang L, Chen Z (2010) One time intranasal vaccination with a modified vaccinia Tiantan strain MVTT(ZCI) protects animals against pathogenic viral challenge. Vaccine 28:2088–2096

    Article  PubMed  CAS  Google Scholar 

  18. Changchun Institute of Biological Products (1978) Comparison of reactogenicity in experimental animals of five vaccinia virus strains of domestic and abroad, vol 7

  19. Chengdu Institute of Biological Products (1978) Comparison of reactogenicity and immunogenicity in experimental animals of five vaccinia virus strains of domestic and abroad, vol 4

  20. Products NiftCoPaB (1974) A summary report on the selection of VG9 vaccinia virus strain which acquired in the collaborative work of the national smallpox vaccine. Compil Commun Vac Virus Strains: Beijing 5

  21. Zhu R, Huang WJ, Yan ZL, Wen ZH, Wang WB, Zhou Y, Wang YC (2011) Studies on the virulence of a novel attenuated vaccinia virus VG9 strain in animals. Chin J Viral Dis 1:183–187 (in Chinese)

    Google Scholar 

  22. Zhu R, Huang W, Wang W, Liu Q, Nie J, Meng S, Yu Y, Wang Y (2012) Comparison on virulence and immunogenicity of two recombinant vaccinia vaccines, Tian Tan and Guang9 strains, expressing the HIV-1 envelope gene. PloS One 7:e48343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Liu Q, Huang W, Nie J, Zhu R, Gao D, Song A, Meng S, Xu X, Wang Y (2012) A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in China. PloS One 7:e33392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Huang W, Liu Y, Duan DL, Li HS, Liu Y, Hong KX, Zhu JH, Shao YM (2004) The construction of attenuated Tiantan recombinant vaccinia virus vector with IFN-γ receptor gene deletion. Chin J Exp Clin Virol 18:43–46 (in Chinese)

    CAS  Google Scholar 

  25. Liu L, Wan Y, Xu J, Huang X, Wu L, Liu Y, Shao Y (2007) Immunogenicity comparison between codon optimized HIV-1 CRF BC_07 gp140 and gp145 vaccines. AIDS Res Hum Retrovir 23:1396–1404

    Article  PubMed  CAS  Google Scholar 

  26. Wyatt LS, Earl PL, Xiao W, Americo JL, Cotter CA, Vogt J, Moss B (2009) Elucidating and minimizing the loss by recombinant vaccinia virus of human immunodeficiency virus gene expression resulting from spontaneous mutations and positive selection. J Virol 83:7176–7184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Carroll MW, Moss B (1997) Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211

    Article  PubMed  CAS  Google Scholar 

  28. Geisbert TW, Jahrling PB (1995) Differentiation of filoviruses by electron microscopy. Virus Res 39:129–150

    Article  PubMed  CAS  Google Scholar 

  29. Goldsmith CS, Miller SE (2009) Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev 22:552–563

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Hung T, Song J, He J (2013) Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. Sci China Life Sci 56:421–430

    Article  PubMed  Google Scholar 

  31. Martin CS, Wight PA, Dobretsova A, Bronstein I (1996) Dual luminescence-based reporter gene assay for luciferase and beta-galactosidase. Biotechniques 21:520–524

    PubMed  CAS  Google Scholar 

  32. Osorio JE, Iams KP, Meteyer CU, Rocke TE (2009) Comparison of monkeypox viruses pathogenesis in mice by in vivo imaging. PloS One 4:e6592

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zaitseva M, Kapnick SM, Scott J, King LR, Manischewitz J, Sirota L, Kodihalli S, Golding H (2009) Application of bioluminescence imaging to the prediction of lethality in vaccinia virus-infected mice. J Virol 83:10437–10447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Zhu R, Huang WJ, Wang YC, Yu YX (2011) Immunogenicity of an attenuated vaccinia virus VG9 strain. Chin J Biol 9:347–350 (in Chinese)

    Google Scholar 

  35. Bedenikovic G, Crouse J, Oxenius A (2014) T-cell help dependence of memory CD8(+) T-cell expansion upon vaccinia virus challenge relies on CD40 signaling. Eur J Immunol 44:115–126

    Article  PubMed  CAS  Google Scholar 

  36. Currier JR, Ngauy V, de Souza MS, Ratto-Kim S, Cox JH, Polonis VR, Earl P, Moss B, Peel S, Slike B, Sriplienchan S, Thongcharoen P, Paris RM, Robb ML, Kim J, Michael NL, Marovich MA (2010) Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate. PloS One 5:e13983

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tao R, Li L, Huang W, Zheng L (2010) Activation of human dendritic cells by recombinant modified vaccinia virus Ankara vectors encoding survivin and IL-2 genes in vitro. Hum Gene Ther 21:98–108

    Article  PubMed  CAS  Google Scholar 

  38. Dobson BM, Tscharke DC (2014) Truncation of gene F5L partially masks rescue of vaccinia virus strain MVA growth on mammalian cells by restricting plaque size. J Gen Virol 95:466–471

    Article  PubMed  CAS  Google Scholar 

  39. Sumner RP, Ren H, Smith GL (2013) Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy. J Gen Virol 94:1121–1126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Wang Y, Kan S, Du S, Qi Y, Wang J, Liu L, Ji H, He D, Wu N, Li C, Chi B, Li X, Jin N (2012) Characterization of an attenuated TE3L-deficient vaccinia virus Tian Tan strain. Antiviral Res 96:324–332

    Article  PubMed  Google Scholar 

  41. Erra EO, Askling HH, Rombo L, Riutta J, Vene S, Yoksan S, Lindquist L, Pakkanen SH, Huhtamo E, Vapalahti O, Kantele A (2012) A single dose of vero cell-derived Japanese encephalitis (JE) vaccine (Ixiaro) effectively boosts immunity in travelers primed with mouse brain-derived JE vaccines. Clin Infect Dis: Off Pub Infect Dis Soc Am 55:825–834

    Article  CAS  Google Scholar 

  42. Miyazaki C, Okada K, Ozaki T, Hirose M, Iribe K, Yokote H, Ishikawa Y, Togashi T, Ueda K (2014) Phase III clinical trials comparing the immunogenicity and safety of the vero cell-derived Japanese encephalitis vaccine Encevac with those of mouse brain-derived vaccine by using the Beijing-1 strain. Clin Vac Immunol: CVI 21:188–195

    Article  CAS  Google Scholar 

  43. Sun MB, Jiang YJ, Li WD, Li PZ, Li GL, Jiang SD, Liao GY (2004) A novel process for production of hepatitis A virus in vero cells grown on microcarriers in bioreactor. World J Gastroenterol: WJG 10:2571–2573

    PubMed  CAS  Google Scholar 

  44. Wang LY, Sun MP, Zhang XC, Suo LD, Xu RH, Zou YJ, Zuo LB, Qi H (2011) Safety and immunogenicity of two freeze-dried vero cell rabies vaccines for human use in post-exposure prophylaxis. Vaccine 29:2679–2681

    Article  PubMed  CAS  Google Scholar 

  45. Bair CH, Chung CS, Vasilevskaya IA, Chang W (1996) Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to vaccinia virus killing. J Virol 70:4655–4666

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Hsiao JC, Chung CS, Drillien R, Chang W (2004) The cowpox virus host range gene, CP77, affects phosphorylation of eIF2 alpha and vaccinia viral translation in apoptotic HeLa cells. Virology 329:199–212

    Article  PubMed  CAS  Google Scholar 

  47. Hsiao JC, Chao CC, Young MJ, Chang YT, Cho EC, Chang W (2006) A poxvirus host range protein, CP77, binds to a cellular protein, HMG20A, and regulates its dissociation from the vaccinia virus genome in CHO-K1 cells. J Virol 80:7714–7728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Ramsey-Ewing A, Moss B (1998) Apoptosis induced by a postbinding step of vaccinia virus entry into Chinese hamster ovary cells. Virology 242:138–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. John T. Schiller for providing the plasmid encoding the firefly luciferase gene, and Dr. Bernard Moss for providing the plasmid pSC65. We also thank Dr. Jingdong Song for electron microscopy assistance.

Financial support This study was supported by grants from National Science and Technology Major Project (2012ZX10004701-001). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxin Yu or Youchun Wang.

Additional information

R. Zhu and Q. Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Liu, Q., Huang, W. et al. Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro . Arch Virol 159, 2587–2596 (2014). https://doi.org/10.1007/s00705-014-2079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2079-2

Keywords

Navigation