Skip to main content

Advertisement

Log in

Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The FPIV-like late domains identified in the matrix (M) proteins of parainfluenza virus 5 and mumps virus have been demonstrated to be critical for virus budding. In this study, we found that the same FPIV sequence motif is present in the N-terminus of the Newcastle disease virus (NDV) M protein. Mutagenesis experiments demonstrated that mutation of either phenylalanine (F) or proline (P) to alanine led to a more obvious decrease in viral virulence and replication and resulted in poor budding of the mutant viruses. Additionally, evidence for the involvement of cellular multivesicular body (MVB) proteins was obtained, since NDV production was inhibited upon expression of dominant-negative versions of the VPS4A-E228Q protein. Together, these results demonstrate that the FPIV motif, especially the residues F and P, within the NDV M protein, plays a critical role in NDV replication and budding, and this budding process likely involves the cellular MVB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Alexander DJ (1997) Newcastle disease and avian paramyxovirus infections. In: Calnek BW, Barnes HJ, Beard CW, McDougald LR (eds) Disease of poultry, 10th edn. Iowa State University Press, Ames, pp 541–569

    Google Scholar 

  2. Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344:55–63

    Article  CAS  PubMed  Google Scholar 

  3. Ciancanelli MJ, Basler CF (2006) Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80:12070–12078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Demirov DG, Orenstein JM, Freed EO (2002) The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 76:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demirov DG, Freed EO (2004) Retrovirus budding. Virus Res 106:87–102

    Article  CAS  PubMed  Google Scholar 

  6. Duan Z, Li Q, He L, Zhao G, Chen J et al (2013) Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein. J Virol Methods 194:118–122

    Article  CAS  PubMed  Google Scholar 

  7. Freed EO (2002) Viral late domains. J Virol 76:4679–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH et al (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65

    Article  CAS  PubMed  Google Scholar 

  9. Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA 88:3195–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harrison MS, Sakaguchi T, Schmitt AP (2010) Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol 42:1416–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He L, Zhao G, Zhong L, Liu Q, Duan Z et al (2013) Isolation and characterization of two H5N1 influenza viruses from swine in Jiangsu Province of China. Arch Virol 158:2531–2541

    Article  CAS  PubMed  Google Scholar 

  12. Hu S, Ma H, Wu Y, Liu W, Wang X et al (2009) A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics. Vaccine 27:904–910

    Article  CAS  PubMed  Google Scholar 

  13. Hu S, Wang T, Liu Y, Meng C, Wang X et al (2010) Identification of a variable epitope on the Newcastle disease virus hemagglutinin-neuraminidase protein. Vet Microbiol 140:92–97

    Article  CAS  PubMed  Google Scholar 

  14. Huang M, Orenstein JM, Martin MA, Freed EO (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69:6810–6818

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Irie T, Shimazu Y, Yoshida T, Sakaguchi T (2007) The YLDL sequence within Sendai virus M protein is critical for budding of virus-like particles and interacts with Alix/AIP1 independently of C protein. J Virol 81:2263–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jayakar HR, Murti KG, Whitt MA (2000) Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 74:9818–9827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li M, Schmitt PT, Li Z, McCrory TS, He B et al (2009) Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol 83:7261–7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu YL, Hu SL, Zhang YM, Sun SJ, Romer-Oberdorfer A et al (2007) Generation of a velogenic Newcastle disease virus from cDNA and expression of the green fluorescent protein. Arch Virol 152:1241–1249

    Article  CAS  PubMed  Google Scholar 

  19. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD (2003) Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci USA 100:12414–12419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Negovetich NJ, Webster RG (2010) Thermostability of subpopulations of H2N3 influenza virus isolates from mallard ducks. J Virol 84:9369–9376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pantua HD, McGinnes LW, Peeples ME, Morrison TG (2006) Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol 80:11062–11073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patch JR, Han Z, McCarthy SE, Yan L, Wang LF et al (2008) The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virol J 5:137

    Article  PubMed  PubMed Central  Google Scholar 

  23. Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 100:12978–12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pornillos O, Garrus JE, Sundquist WI (2002) Mechanisms of enveloped RNA virus budding. Trends Cell Biol 12:569–579

    Article  CAS  PubMed  Google Scholar 

  25. Puffer BA, Parent LJ, Wills JW, Montelaro RC (1997) Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol 71:6541–6546

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497

    Google Scholar 

  27. Schmitt AP, Lamb RA (2004) Escaping from the cell: assembly and budding of negative-strand RNA viruses. Curr Top Microbiol Immunol 283:145–196

    CAS  PubMed  Google Scholar 

  28. Schmitt AP, Leser GP, Morita E, Sundquist WI, Lamb RA (2005) Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol 79:2988–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP et al (1994) An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 68:6605–6618

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wirblich C, Tan GS, Papaneri A, Godlewski PJ, Orenstein JM et al (2008) PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity. J Virol 82:9730–9738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Wes Sundquist (Department of Biochemistry, University of Utah) for providing plasmids encoding VPS4A proteins, and Dr. Chan Ding (Shanghai Veterinary Research Institute, China) for providing mouse anti-NDV NP monoclonal antibody (3F5). This work was supported by National Natural Science Foundation of China (31172338), a project funded by the Excellent Doctoral Dissertation of Yangzhou University, the Earmarked Fund for Modern Agro-industry Technology Research System (nycytx-41-G07), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Chinese Special Fund for Agro-Scientific Research in the Public Interest (201303033).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufan Liu.

Additional information

Z. Duan and Z. Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z., Hu, Z., Zhu, J. et al. Mutations in the FPIV motif of Newcastle disease virus matrix protein attenuate virus replication and reduce virus budding. Arch Virol 159, 1813–1819 (2014). https://doi.org/10.1007/s00705-014-1998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-1998-2

Keywords

Navigation